K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

3 tháng 8 2023

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

10 tháng 5 2023

Câu 1 \(k\) chạy từ 2 nhé, mình quên.

18 tháng 5 2023

câm mồm vào thằng nhóc

21 tháng 4 2023

Một mảnh đất hình chữ nhật có chiều dài là 30, chều rộng bằng 1/3.

Trên mảnh vườn đó trồng khoai. Cứ 10 m2 thì được 50 kg khoai.Hỏi diện tích và số kg khoai

3 tháng 5 2023

                    Chiều rộng mảnh vườn là:

                             30*1/3=10(m)

                     diện tích mảnh vườn đó là:

                              30*10=300(m2)

                     số kg khoai thu đc là:

                              300:10*50=1500kg=1,5 tấn

10 tháng 2 2023

không biết :))))

17 tháng 9 2022

Đầu kiện: \(x+y\ne0\Leftrightarrow x\ne-y\)

Ta có:

\(3x^3-y^3=\dfrac{1}{x+y}\\ \Leftrightarrow\left(3x^3-y^3\right)\left(x+y\right)=1\\ \Leftrightarrow\left(3x^3-y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)(*)

Xét \(y=0\Rightarrow x=\pm1\) thay vào phương trình (*) ta thấy không thõa mãn.

Với \(y\ne0\) chia hai vế phương trình (*) cho \(y^4\) ta có:

\(\dfrac{\left(3x^3-y^3\right)\left(x+y\right)}{y^4}=\dfrac{\left(x^2+y^2\right)^2}{y^4}\\ \Leftrightarrow\left(\dfrac{3x^3}{y^3}-1\right)\left(\dfrac{x}{y}+1\right)=\left(\dfrac{x^2}{y^2}+1\right)^2\)

Đặt \(t=\dfrac{x}{y}\) thay vào phương trình trên ta có:

\(\left(3t^3-1\right)\left(t+1\right)=\left(t^2+1\right)^2\)

\(\Leftrightarrow3t^4-t+3t^3-1=t^4+2t^2+1\\ \Leftrightarrow2t^4+3t^3-2t^2-t-2=0\\ \)

\(\Leftrightarrow2t^3\left(t+2\right)-t^2\left(t+2\right)-\left(t+2\right)=0\\ \Leftrightarrow\left(t+2\right)\left(2t^3-t^2-1\right)=0\\ \Leftrightarrow\left(t+2\right)\left(t^3-1+t^3-t^2=0\right)\\ \Leftrightarrow\left(t+2\right)\left(t-1\right)\left(2t^2+t+1\right)=0\\ \)

\(\Rightarrow\left[{}\begin{matrix}t+2=0\\t-1=0\\2t^2+t+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}t=-2\\t=1\\\Delta< 0,vô.nghiệm\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2y\\x=y\end{matrix}\right.\)

Thay x vào phương trình \(x^2+y^2=1\) tìm y => x.

So với đầu kiện bài toán kết luận nghiệm