Cho m, n là 2 số chính phương lẻ liên tiếp. Chứng minh mn-m-n+1 chia hết cho 192
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Điện năng tiêu thụ của đèn huỳnh quang trong 1 ngày là:
A=P*t=40*4=160 Wh
Điện năng tiêu thụ của nồi cơm điện trong 1 ngày là:
A=P*t=600*1=600 Wh
Điện năng tiêu thụ của các đồ dung điện trong 1 ngày là:
A=160+600=760 Wh
Điện năng tiêu thụ của các đồ dùng điện trong tháng 4 (30 ngày) là:
A=760*30=22800 Wh=22.8 KWh
b.Số tiền điện phải trả trong tháng 4 là:
22.8*1700=38760 đồng
A B C D E F H K
a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)
b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)
c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng
Cho tam giác ABC vuông tại a . Điểm M bất kì trên AC . Kẻ CH vuông góc với tia BM tại H và tia BA tại O. Gọi I là trung điểm của BC . Qua M kẻ đường thẳng vuông góc với MI , cắt OB và OC thứ tự tại P và Q . Chứng minh M là trung điểm của PQ
a, \(x^2+2y^2+z^2\ge2xy-2yz\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+2yz+z^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+z\right)^2\ge0\)* đúng *
Dấu ''='' xảy ra khi \(x=y=-z\)
b, \(x^2+y^2+z^2+14\ge2x-4y+6z\)
\(\Leftrightarrow x^2-2x+1+y^2-4y+4+z^2-6z+9\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2\ge0\)*đúng *
Dấu ''='' xảy ra khi \(x=1;y=2;z=3\)
a) chuyển VP rồi tách 2y2 -> y2 + y2 ta đc bđt luôn đúng ( x - y )2 + ( y + z )2 ≥ 0
Đẳng thức xảy ra <=> x = y = -z
b) chuyển VP rồi tách 14 = 1 + 4 + 9 ta đc bđt luôn đúng ( x - 1 )2 + ( y + 2 )2 + ( z - 3 )2 ≥ 0
Đẳng thức xảy ra <=> x = 1 ; y = -2 ; z = 3
Ơ, là sao?
Chưa cho phép tính nữa mà đã ra đề rồi
Vậy mà cũng nói
Haizzzz...Thật là khó hiểu
- -
_
m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)
⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)
Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3
+ k chẵn ⇒k(k+2)⋮4⇒k(k+2)⋮4
+k lẻ ⇒(k+1)2⋮4⇒(k+1)2⋮4
⇒16k(k+2)(k+1)2⋮64⇒16k(k+2)(k+1)2⋮64
mn−m−n+1⋮192