Mọi người giúp mik gấp vs:
Bài 1: Tìm giá trị nguyên của n để phân số sau nhận giá trị nguyên:
A=3n+9/n-4 B=6n+5/2n-1
Bài 2: Tìm GTLN của:
A=3/2-1/2|x-2| D=-2,3|1/2-x| +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|3x+4|=x+2
=>\(\left\{{}\begin{matrix}x+2>=0\\\left(3x+4\right)^2=\left(x+2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(3x+4-x-2\right)\left(3x+4+x+2\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(2x+2\right)\left(4x+6\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-2\\x\in\left\{-1;-\dfrac{3}{2}\right\}\end{matrix}\right.\Leftrightarrow x\in\left\{-1;-\dfrac{3}{2}\right\}\)
|5x-6|=4-x
=>\(\left\{{}\begin{matrix}4-x>=0\\\left(5x-6\right)^2=\left(4-x\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =4\\\left(5x-6-4+x\right)\left(5x-6+4-x\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =4\\\left(6x-10\right)\left(4x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{5}{3};\dfrac{1}{2}\right\}\)
|5-2x|=x-3
=>|2x-5|=x-3
=>\(\left\{{}\begin{matrix}x-3>=0\\\left(2x-5\right)^2=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=3\\\left(2x-5\right)^2-\left(x-3\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\\left(x-2\right)\left(3x-8\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
|3-2x|=6+4x
=>|2x-3|=4x+6
=>\(\left\{{}\begin{matrix}4x+6>=0\\\left(4x+6\right)^2=\left(2x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{2}\\\left(4x+6-2x+3\right)\left(4x+6+2x-3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{3}{2}\\\left(2x+9\right)\left(6x+3\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)
|6-3x|=3x
=>|3x-6|=3x
=>|x-2|=x
=>\(\left\{{}\begin{matrix}x>=0\\\left(x-2\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=0\\-4x+4=0\end{matrix}\right.\Leftrightarrow x=1\)
\(\left|3x+4\right|=x+2\\ \Rightarrow\left[{}\begin{matrix}3x+4=x+2\left(x\ge-\dfrac{4}{3}\right)\\3x+4=-\left(x+2\right)\left(x< -\dfrac{4}{3}\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x-x=2-4\\3x+x=-2-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=-2\\4x=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=-\dfrac{6}{4}=-\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
______________________
\(\left|5x-6\right|=4-x\\ \Rightarrow\left[{}\begin{matrix}5x-6=4-x\left(x\ge\dfrac{6}{5}\right)\\5x-6=-\left(4-x\right)\left(x< \dfrac{6}{5}\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}5x+x=4+6\\5x-x=-4+6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}6x=10\\4x=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{6}=\dfrac{5}{3}\left(tm\right)\\x=\dfrac{2}{4}=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
________________________
\(\left|5-2x\right|=x-3\\ \Rightarrow\left[{}\begin{matrix}5-2x=x-3\left(x\le\dfrac{5}{2}\right)\\5-2x=-\left(x-3\right)\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-2x-x=-3-5\\-2x+x=3-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-3x=-8\\-x=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-8}{-3}=\dfrac{8}{3}\left(ktm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
\(\left|3-2x\right|=6+4x\\ \Rightarrow\left[{}\begin{matrix}3-2x=6+4x\left(x\le\dfrac{3}{2}\right)\\3-2x=-\left(6+4x\right)\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\\\Rightarrow\left[{}\begin{matrix}4x+2x=3-6\\-2x+4x=-6-3\end{matrix}\right. \\ \Rightarrow\left[{}\begin{matrix}6x=-3\\2x=-9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(tm\right)\\x=-\dfrac{9}{2}\left(ktm\right)\end{matrix}\right.\)
________________________
\(\left|6-3x\right|=3x\\ \Rightarrow\left[{}\begin{matrix}6-3x=3x\left(x\le2\right)\\6-3x=-3x\left(x>2\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x+3x=6\\6=0\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x=\dfrac{6}{6}=1\left(tm\right)\)
Số công nhân cần có để hoàn thành công việc trong 14 ngày là:
\(56\cdot\dfrac{21}{14}=56\cdot\dfrac{3}{2}=84\left(người\right)\)
Số công nhân cần tăng thêm là:
84-56=28(người)
Giải:
Một công nhân hoàn thành công việc đó trong số ngày là:
21 x 56 = 1176 (ngày)
Để hoàn thành công việc trong 14 ngày cần số người là:
1176 : 14 = 84 (người)
Vậy để hoàn thành công việc trong 14 ngày cần bổ sung thêm số người là:
84 - 56 = 28 (người)
Đáp số:.....
a: \(0,5^{1000}=\left(0,5^5\right)^{200}=0,03125^{200}\)
mà \(0,03125< 0,625\)
nên \(0,5^{1000}< 0,625^{200}\)
c: \(A=2+2^2+...+2^{2022}\)
=>\(2A=2^2+2^3+...+2^{2023}\)
=>\(2A-A=2^2+2^3+...+2^{2023}-2-2^2-...-2^{2022}\)
=>\(A=2^{2023}-2\)
=>A<B
e: \(2020A=\dfrac{2020^{2024}-2020}{2020^{2024}-1}=1-\dfrac{2019}{2020^{2024}-1}\)
\(2020B=\dfrac{2020^{2024}+2020}{2020^{2024}+1}=1+\dfrac{2019}{2020^{2024}+1}\)
Vì \(-\dfrac{2019}{2020^{2024}-1}< 0< \dfrac{2019}{2020^{2024}+1}\)
nên \(-\dfrac{2019}{2020^{2024}-1}+1< \dfrac{2019}{2020^{2024}+1}+1\)
=>2020A<2020B
=>A<B
d: \(\left(-\dfrac{3}{2}\right)^{2024}=\left(\dfrac{3}{2}\right)^{2024};\left(-2\right)^{2024}=2^{2024}\)
mà 3/2<2
nên \(\left(-\dfrac{3}{2}\right)^{2024}< 2^{2024}\)
\(a.\dfrac{3}{7}=\dfrac{2x+1}{3x+5}\\ 3\left(3x+5\right)=7\left(2x+1\right)\\ 9x+15=14x+7\\ 14x-9x=15-7\\ 5x=8\\ x=\dfrac{8}{5}\\ b.\dfrac{x+1}{x-2}=\dfrac{3}{4}\\ 3\left(x-2\right)=4\left(x+1\right)\\ 3x-6=4x+4\\ 4x-3x=-6-4\\ x=-10\\ c.\dfrac{2x+3}{7}=\dfrac{4x-1}{15}\\ 15\left(2x+3\right)=7\left(4x+1\right)\\ 30x+45=28x+7\\ 30x-28x=7-45\\ 2x=-38\\ x=\dfrac{-38}{2}=-19\\ d.\dfrac{6x-5}{-7}=\dfrac{5x-3}{-5}\\ -5\left(6x-5\right)=-7\left(5x-3\right)\\ -30x+25=-35x+21\\ -30x+35x=21-25\\ 5x=-4\\ x=-\dfrac{4}{5}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k=>\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{dk}{dk+d}=\dfrac{c}{c+d}\)
b) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{2c+5d}{3c-4d}\)
c) \(\dfrac{2018a-2019b}{2019c+2020d}=\dfrac{2018bk-2019b}{2019dk+2020d}=\dfrac{b\left(2018k-2019\right)}{d\left(2019k+2020\right)}=\dfrac{b}{d}\cdot\dfrac{2018k-2019}{2019k+2020}\) (1)
Mà: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{b}{d}=\dfrac{c}{a}\)
\(\left(1\right)=\dfrac{c}{a}\cdot\dfrac{2018k-2019}{2019k+2020}=\dfrac{2018ck-2019c}{2019ak+2020a}=\dfrac{2018ck-2019dk}{2019ak+2020bk}\\ =\dfrac{k\left(2018c-2019d\right)}{k\left(2019a+2020b\right)}=\dfrac{2018c-2019d}{2019a+2020b}\)
(5.3^5) + 17.3^4) : 6^2
= (5.243 + 17.81) : 36
= (1215 + 1377) : 36
= 2592 : 36
= 72
Bài 1
a: ĐKXĐ: \(n\ne4\)
Để A nguyên thì \(3n+9⋮n-4\)
=>\(3n-12+21⋮n-4\)
=>\(21⋮n-4\)
=>\(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
b: ĐKXĐ: n<>1/2
Để B nguyên thì \(6n+5⋮2n-1\)
=>\(6n-3+8⋮2n-1\)
=>\(8⋮2n-1\)
mà 2n-1 lẻ(do n nguyên)
nên \(2n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{1;0\right\}\)
Bài 2:
a: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
=>\(-\dfrac{1}{2}\left|x-2\right|< =0\forall x\)
=>\(A=-\dfrac{1}{2}\left|x-2\right|+\dfrac{3}{2}< =\dfrac{3}{2}\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(\left|\dfrac{1}{2}-x\right|>=0\forall x\)
=>\(-2,3\left|\dfrac{1}{2}-x\right|< =0\forall x\)
=>\(D=-2,3\left|\dfrac{1}{2}-x\right|+2< =2\forall x\)
Dấu '=' xảy ra khi 1/2-x=0
=>x=1/2
Bài 1:
\(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12}{n-4}+\dfrac{21}{n-4}=3+\dfrac{21}{n-4}\)
Để A nguyên thì \(\dfrac{21}{n-4}\) phải nguyên hay \(\left(n-4\right)\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\) (thoả mãn điều kiện)
Vậy...
\(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\)
Để B nguyên thì \(\dfrac{8}{2n-1}\) phải nguyên hay \(\left(2n-1\right)\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Mặt khác: Vì n nguyên nên 2n-1 là số lẻ
Do đó: \(\left(2n-1\right)\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{1;0\right\}\)
Vậy....