\(\sqrt{3x-2}=-4x^2+21x-22\) Giải phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(\sqrt{\left(x-3\right).\left(x^2-x-6\right)}=x^2-7x+12\)
PT \(\Leftrightarrow\sqrt{\left(x-3\right).\left(x-3\right).\left(x+2\right)}=\left(x-3\right).\left(x-4\right)\)
Điều kiện: \(\hept{\begin{cases}\left(x-3\right)^2.\left(x+2\right)\ge0\\\left(x-3\right).\left(x-4\right)\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}-2\le x\le3\\x\ge4\end{cases}}\)
PT \(\Leftrightarrow\left(x-3\right)^2.\left(x+2\right)=\left(x-3\right)^2.\left(x-4\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2.\left(x^2-9x+14\right)=0\)
Trường hợp 1: \(x=3\)
Trường hợp 2: \(x=7\)
Trường hợp 3: \(x=2\) (TMĐK)
Answer:
b) \(2\sqrt{x+3}=9x^2-x-4\)
ĐK: x\(x\ge-3\) phương trình tương đương:
Ta có: \(2\sqrt{x+3}=9x^2-x-4\)
\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)
\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)
\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)