Tìm một số tự nhiên có ba chữ số biết nếu viết thêm chữ số 1 vào đằng trước, đằng sau số đó ta đều được hai số có bốn chữ số nhưng số viết đằng sau hơn số viết đằng trước 1107 đơn vị.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9}{19}-1,251+\dfrac{10}{19}+1,251=\dfrac{19}{19}-1,251+1,252=1\)
\(-8.24,7.0,125=-8.24,7.\dfrac{1}{8}=-24,7\)
\(0,25.\dfrac{7}{15}-\dfrac{1}{4}\left(-\dfrac{8}{15}\right)+0,25=\dfrac{1}{4}.\dfrac{7}{15}-\dfrac{1}{4}\left(-\dfrac{8}{15}\right)+\dfrac{1}{4}=\dfrac{1}{4}\left(\dfrac{7}{15}+\dfrac{8}{15}+1\right)=\dfrac{1}{4}.2=\dfrac{1}{2}\)
`9/19 - 1,251 + 1,251 + 10/19`
`= (9/19 + 10/19) + (1,251 - 1,251)`
`= 1 + 0`
`= 1`
`(-8) × 24,7 × 0,125`
`= [(-8) × 0,125] × 24,7`
`= (-1) × 24,7`
`= (-24,7)`
`0,25 × 7/15 - 1/4 × (-8/15) + 0,25 `
`= 0,25 × 7/15 - 0,25 × (-8/15) + 0,25 × 1`
`= 0,25 × [7/15 -(-8/15) + 1]`
`= 0,25 × [7/15 + 8/15 + 1]`
`= 0,25 × 2`
`= 0,5`
Giải:
Từ 1 đến 9 có: (9 - 1) : 1 + 1 = 9 (số)
Từ trang 1 đến trang 9 cần: 1 x 9 = 9 (chữ số)
Từ 10 đến 99 có: (94 - 10) : 1 + 1 = 85 (số)
Từ trang 10 đến trang 99 cần: 2 x 85 = 170 (chữ số)
Để đánh cuốn sách dày 94 trang thì cần dùng số chữ số là:
9 + 170 = 179 (chữ số)
Kết luận: Để đánh trang sách dày 94 trang cần 179 chữ số
a, \(P\left(x\right)=3x^3+2x^3-2x+7-x^2-x=5x^3-3x+7-x^2\)
\(Q\left(x\right)=-3x^3+x-14-2x-x^2-1=-3x^3-x-x^2-15\)
b, \(M\left(x\right)=5x^3-3x+7-x^2-3x^3-x-x^2-15=2x^3-2x^2-4x-8\)
\(N\left(x\right)=5x^3-3x+7-x^2+3x^3+x+x^2+15=8x^3-2x+22\)
c, \(P\left(x\right)=-Q\left(x\right)\Leftrightarrow5x^3-3x+7-x^2=3x^3+x+x^2+15\)
\(\Leftrightarrow2x^3-2x^2-4x-8=0\)
a) \(P\left(x\right)=3x^3+2x^3-2x+7-x^2-x\\ =\left(3x^3+2x^3\right)-x^2+\left(-2x-x\right)+7\\ =5x^3-x^2-3x+7\)
\(Q\left(x\right)=-3x^3+x-14-2x-x^2-1\\ =-3x^3-x^2+\left(x-2x\right)+\left(-14-1\right)\\ =-3x^3-x^2-x-15\)
b) \(M\left(x\right)=5x^3-x^2-3x+7+\left(-3x^3-x^2-x-15\right)\\ =\left(5x^3-3x^3\right)+\left(-x^2-x^2\right)+\left(-3x-x\right)+\left(7-15\right)\\ =2x^3-2x^2-4x-8\)
\(N\left(x\right)=5x^3-x^2-3x+7-\left(-3x^3-x^2-x-15\right)\\ =5x^3-x^2-3x+7+3x^3+x^2+x+15\\ =\left(5x^3+3x^3\right)+\left(x^2-x^2\right)+\left(x-3x\right)+\left(15+7\right)\\ =8x^3-2x+22\)
c) \(P\left(x\right)=-Q\left(x\right)\Rightarrow P\left(x\right)+Q\left(x\right)=0\\ \Rightarrow M\left(x\right)=0\Rightarrow2x^3-2x^2-4x-8=0\\ \Rightarrow x^3-x^2-2x-4=0\)
Bạn xem lại đề nhé
2x2 - 18x + 6x -6 = 16 + 25
2x2 - 12x -47 =0
\(x=\pm\dfrac{\sqrt{130}+6}{2}\)
Hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)
Cách chứng minh: \(VT=\left(a^2+ab\right)+\left(ab+b^2\right)=a\left(a+b\right)+b\left(a+b\right)\\ =\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=VP\)
Áp dụng:
Kiểu đề 1: \(2x\left(x-9\right)+3\left(2x\right)-6=4^2+5^2\\ \Rightarrow2x^2-18x+6x-6=16+25\\ \Rightarrow2x^2-12x-47=0\\ \Rightarrow x^2-6x-\dfrac{47}{2}=0\\ \Rightarrow\left(x^2-2.x.3+3^2\right)-9-\dfrac{47}{2}=0\\ \Rightarrow\left(x-3\right)^2=\dfrac{65}{2}=\left(\dfrac{\pm\sqrt{130}}{2}\right)^2\\\)
\(\Rightarrow\left[{}\begin{matrix}x-3=\dfrac{\sqrt{130}}{2}\\x-3=\dfrac{-\sqrt{130}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{130}}{2}\\x=\dfrac{6-\sqrt{130}}{2}\end{matrix}\right.\)
Kiểu đề 2: \(2x\left(x-9\right)+3\left(2x-6\right)=4^2+5^2\\ \Rightarrow2x^2-18x+6x-18=16+25\\ \Rightarrow2x^2-12x-59=0\\ \Rightarrow x^2-6x-\dfrac{59}{2}=0\\ \Rightarrow\left(x^2-2.x.3+3^2\right)-9-\dfrac{59}{2}=0\\ \Rightarrow\left(x-3\right)^2=\dfrac{77}{2}=\left(\dfrac{\pm\sqrt{154}}{2}\right)^2\\ \)
\(\Rightarrow\left[{}\begin{matrix}x-3=\dfrac{\sqrt{154}}{2}\\x-3=\dfrac{-\sqrt{154}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{154}}{2}\\x=\dfrac{6-\sqrt{154}}{2}\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)
Nhận xét:
\(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\\\left(y+\dfrac{1}{2}\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2\ge0,\forall x,y\)
Dấu \("="\) xảy ra khi:
\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2};y=-\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2};y=-\dfrac{1}{2}\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Ta có:
\(92^3\equiv2\left(mod6\right)\)
\(\Rightarrow92^{30}\equiv\left(92^3\right)^{10}\left(mod6\right)\equiv2^{10}\left(mod6\right)\equiv4\left(mod6\right)\)
\(\Rightarrow92^{90}\equiv\left(92^{30}\right)^3\left(mod6\right)\equiv4^3\left(mod6\right)\equiv4\left(mod6\right)\)
\(\Rightarrow92^{93}\equiv92^{90}.92^3\left(mod6\right)\equiv4.2\left(mod6\right)\equiv2\left(mod6\right)\)
\(139^2\equiv1\left(mod6\right)\)
\(\Rightarrow139^{20}\equiv\left(139^2\right)^{10}\left(mod6\right)\equiv1^{10}\left(mod6\right)\equiv1\left(mod6\right)\)
\(\Rightarrow92^{93}+139^{20}+3\equiv2+1+3\left(mod6\right)\equiv6\left(mod6\right)\equiv0\left(mod6\right)\)
Vậy \(\left(92^{93}+139^{20}+3\right)⋮6\)
Gọi số đó có dạng: \(\overline{abc}\)
Khi thêm số 1 vào đằng trước số đó thì ta được số: \(\overline{1abc}\)
Khi thêm số 1 vào đằng sau số đó thì ta được số: \(\overline{abc1}\)
Mà số được thêm số 1 vào đằng sau lớn hơn số được thêm số 1 vào đằng trước 1107 đơn vị nên ta có:
\(\overline{abc1}-\overline{1abc}=1107\)
\(\left(\overline{abc}\cdot10+1\right)-\left(1000+\overline{abc}\right)=1107\)
\(\overline{abc}\cdot10+1-1000+\overline{abc}=1107\)
\(9\cdot\overline{abc}-999=1107\)
\(9\cdot\overline{abc}=1107+999=2106\)
\(\overline{abc}=\dfrac{2106}{9}\)
\(\overline{abc}=234\)
Vậy: ..