K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2024

A = \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + ... + \(\dfrac{2}{9.11}\)

A = \(\dfrac{1}{1}-\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{9}\) - \(\dfrac{1}{11}\)

A =   \(\dfrac{1}{1}\) - \(\dfrac{1}{11}\) 

A = \(\dfrac{10}{11}\)

23 tháng 12 2024

Để giải phép tính A=21⋅3+23⋅5+25⋅7+⋯+29⋅11A = \frac{2}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + \cdots + \frac{2}{9 \cdot 11} dưới dạng siêu phức tạp, ta sẽ thực hiện các bước trung gian phức tạp và giải thích chi tiết từng phần của phép toán.

Bước 1: Phân tích cấu trúc tổng quát

Ta có tổng sau:

A=21⋅3+23⋅5+25⋅7+⋯+29⋅11A = \frac{2}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + \cdots + \frac{2}{9 \cdot 11}

Mỗi phần tử trong tổng là một phân số có mẫu số là tích của hai số lẻ liên tiếp. Tổng quát, ta có thể viết mỗi phần tử theo dạng:

2(2n−1)(2n+1)vớin=1,2,3,…,5.\frac{2}{(2n-1)(2n+1)} \quad \text{với} \quad n = 1, 2, 3, \dots, 5.

Vậy tổng có thể viết lại là:

A=∑n=152(2n−1)(2n+1)A = \sum_{n=1}^{5} \frac{2}{(2n-1)(2n+1)}

Bước 2: Đơn giản hóa mỗi phân số

Ta sẽ đơn giản hóa từng phân số trong tổng. Dễ dàng nhận thấy rằng mỗi phân số có thể rút gọn bằng cách sử dụng phép phân tích thành phần phân số (phương pháp phân tích phân số thành phần nhỏ hơn).

2(2n−1)(2n+1)=A2n−1+B2n+1\frac{2}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}

Với mục đích tìm AABB, ta giải phương trình sau:

2(2n−1)(2n+1)=A2n−1+B2n+1\frac{2}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}

Nhân cả hai vế với (2n−1)(2n+1)(2n-1)(2n+1):

2=A(2n+1)+B(2n−1)2 = A(2n+1) + B(2n-1)

Mở rộng các biểu thức:

2=A(2n)+A+B(2n)−B2 = A(2n) + A + B(2n) - B

Nhóm các hạng tử theo nn:

2=(2n)(A+B)+(A−B)2 = (2n)(A + B) + (A - B)

Vì phương trình này phải đúng với mọi giá trị của nn, ta có hệ phương trình:

A+B=0A + B = 0 A−B=2A - B = 2

Giải hệ này:

A=1vaˋB=−1A = 1 \quad \text{và} \quad B = -1

Vậy ta có:

2(2n−1)(2n+1)=12n−1−12n+1\frac{2}{(2n-1)(2n+1)} = \frac{1}{2n-1} - \frac{1}{2n+1}

Bước 3: Thay vào tổng

Ta thay vào biểu thức tổng ban đầu:

A=∑n=15(12n−1−12n+1)A = \sum_{n=1}^{5} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right)

Viết cụ thể từng phần tử:

A=(11−13)+(13−15)+(15−17)+(17−19)+(19−111)A = \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{9} \right) + \left( \frac{1}{9} - \frac{1}{11} \right)

Bước 4: Tính toán các hạng tử

Quan sát rằng tổng này là một chuỗi lũy tiến mà trong đó các hạng tử sẽ hủy bỏ lẫn nhau. Cụ thể:

A=1−111A = 1 - \frac{1}{11}

Vậy:

A=1111−111=1011A = \frac{11}{11} - \frac{1}{11} = \frac{10}{11}

Bước 5: Kết quả

Do đó, kết quả của phép tính AA là:

A=1011A = \frac{10}{11}

 
23 tháng 12 2024

           (2n - 1) ⋮ (6 - n)

[-2(6 - n) + 11] ⋮ (6 - n)

                  11 ⋮ (6 - n)

  (6 - n) \(\in\) Ư(11) = {-11; -1; 1; 11}

6 - n -11 -1 1 11
n 17 7 5 -5
\(\in\) N tm tm tm tm

Theo bảng trên ta có: n \(\in\) { 17; 7; 5; -5}

Vậy n \(\in\) {17; 7; 5; -5}

 

23 tháng 12 2024

(2n - 1) ⋮ (6 - n) (1)

Ta có:

(6 - n) ⋮ (6 - n)

=> 2. (6 - n) ⋮ (6 - n)

=> (12 - 2n) ⋮ (6 - n) (2)

Từ (1) và (2)

=> (2n - 1) + (12 - 2n) ⋮ (6 - n)

=> 2n - 1 + 12 - 2n ⋮ (6 - n)

=> 11 ⋮ (6 - n)

=> (6 - n) ϵ Ư (11) = {1; 11; -1; -11}

Ta có bảng sau:

6 - n 1 11 -1 -11
n 5 -5 7 17

Vậy n ϵ {5; -5; 7; 17}

 

23 tháng 12 2024

2\(xy\) + \(x+2y\) = 4

(2\(xy\) + 2y) + (\(x\) + 1) =5

2y(\(x+1\)) + (\(x+1\))  =5

  (\(x+1\))(2y + 1) = 5

5 = 5; Ư(5)  = {-5; -1; 1; 5}

lập bảng ta có:

\(x+1\) -5 -1 1 5
\(x\) -6 -2 0 4
2y + 1 -1 -5 5 1
y -1 - 3 2 0
\(x;y\in\)N tm tm tm tm

Theo bảng trên ta có (\(x;y\))  =(-6; -1); (-2; -3); (0; 2); (4; 0)

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là: (-6; -1);(-2; -3); (0; 2); (4; 0)

 

23 tháng 12 2024

(2n  - 3)⋮ (n  +1) ( -1 ≠ n; n \(\in\) Z)

[2(n  + 1) - 5] ⋮ (n + 1)

                 5 ⋮ (n  + 1)

   (n + 1) \(\in\) Ư(5) = {-5; -1; 1; 5}

Lập bảng ta có: 

n + 1 -5 -1 1 5
n -6 -2 0 4
- 1 \(\ne\) n \(\in\) Z tm tm tm tm

Theo bảng trên ta có n \(\in\) {-6; -2; 0; 4}

Vậy n \(\in\) {-6; -2; 0; 4} 

23 tháng 12 2024

 ta có :2n-3 ⋮ n+1

    suy ra : 2(n+1)-5 ⋮ n+1 | giải thích :2n-3=2(n+1)-5=2n+2-5→2-5=-3

       mà n+1 ⋮ n+1

        nên  2.n+1 ⋮ n+1

       suy ra : -5 ⋮ n+1

        do đó : n+1 ϵ ư(-5)={-1;1;-5;5}

          ...

      

23 tháng 12 2024

2.\(3^{x+5}\) = 54 

  \(3^{x+5}\) = 54 : 2

  3\(^{x+5}\) = 27

  3\(^{x+5}\) = \(3^3\)

   \(x+5\) = 3

   \(x\) = 3 - 5

   \(x=-2\)

Vậy \(x=-2\) 

23 tháng 12 2024

Chu vi hình thoi là:

`5 . 4 = 20 (cm)`

Diện tích hình thoi là:

`1/2 . 6 . 8 = 24 (cm^2)`

23 tháng 12 2024

   (3\(x\) + 2) ⋮ (2\(x\) - 1) 

2(3\(x\) + 2) ⋮ (2\(x\) - 1)

[3.(2\(x\) - 1) + 7]⋮ (2\(x\) - 1)

                    7 ⋮ (2\(x\) - 1)

    (2\(x\) - 1) \(\in\) Ư(7) = {-7; -1; 1; 7}

Lập bảng ta có:

2\(x\) - 1 -7 -1 1 7
\(x\) -3 0 1 4
\(\dfrac{3x+2}{2x-1}\) 1 -2 5 2
  tm tm tm tm

Theo bảng trên ta có \(x\) \(\in\) {-3; 0; 1; 4}

Vậy \(x\) {-3; 0; 1; 4}

23 tháng 12 2024

( 3x + 2 ) ⋮ ( 2x - 1 )

⇒ 2.( 3x + 2 ) ⋮ ( 2x - 1 )

⇒ 6x + 4 ⋮ ( 2x - 1 )

⇒ 3.( 2x - 1 ) - 7 ⋮ ( 2x - 1 )

   Vì 3.( 2x - 1 ) ⋮ ( 2x - 1 )

        nên 7 ⋮ ( 2x - 1 )

⇒ ( 2x - 1 ) \(\in\) Ư(7)

    ( 2x - 1 ) \(\in\) { - 1 ; 1 ; - 7 ; 7 }

       2x        \(\in\) { 0 ; 2 ; - 6 ; 8 }

         x        \(\in\) { 0 ; 1 ; - 3 ; 4 }

23 tháng 12 2024

Đây là toán nâng cao chuyên đề tìm số dư, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng đẳng thức đồng dư như sau:

                                       Giải:

a; Tìm số dư của phép chia 3100 cho 7

           \(3^{100}\) = \(\left(3^6\right)^{16}\).34 = \(729^{16}\).81

          729 \(\equiv\) 1 (mod 7)

           \(729^{16}\) \(\equiv\) \(1^{16}\) (mod 7)

           \(729^{16}\) \(\equiv\) 1 (mod 7)

           81 \(\equiv\) 4 (mod 7)

     ⇒ \(729^{16}\).81 \(\equiv\) 1.4 (mod 7) 

     ⇒\(729^{16}.81\equiv4\) (mod 7) 

Vậy A chia 7 dư 4 

         

 

22 tháng 12 2024

Ý của bạn là gì với hoạt động trải nghiệm?

23 tháng 12 2024

A = 20  + 21  +22 + 23 + 24 + 25+ ..+ 2100

Xét dãy số: 20; 21; 22; 23;...;24;...; 2100

Dãy số trên là dãy số cách đều với khoảng cách là:  21 - 20 = 1

Số số hạng của dãy số trên là: (2100 - 20) : 1 + 1 = 2081 (số)

Vì  2081 : 3 = 693 dư 2 nên nhóm 3 số hạng của A vào nhau ta được:

A = 20 + 21 + (22 + 23 + 24) + (25 + 26  +27) +...+(2098+2099+2100)

Vì tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 nên số dư của A khi chia cho 3 là số dư của 20 + 21 khi chia cho 3

20 + 21 = 41; 41 : 3  = 13 dư 2

Vậy số  dư của phép chia A cho 3 là 2