4x^3=y^3 × ( x+ y+ 2)
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2=6\)
\(x^2=6-2\)
\(x^2=4\)
\(x=-2\) hoặc \(x=2\)
Vậy \(S=\left\{-2;2\right\}\)
\(x^2\) + 2 = 6
\(x^2\) = 6 - 2
\(x^2\) = 4
Vì \(x^2\) = 4 nên x = 2 hoặc -2
Vậy x={2;-2}.
6\(x\) - 18 > 4\(x\) - 6
6\(x\) - 4\(x\) > - 6 + 18
2\(x\) > 12
\(x>12:2\)
\(x\) > 6
Vậy \(x\) > 6
`(2x - 5)(2x + 1) = (2x - 5)(x + 4)`
`(2x - 5)(2x + 1) - (2x - 5)(x +4) = 0`
`(2x - 5)[(2x + 1) - (x + 4)]=0`
`(2x - 5)(2x + 1 - x - 4) = 0`
`(2x - 5)(x - 3) = 0`
\(\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\\ \left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
(2\(x-5\)).(2\(x+1\)) = (2\(x-5\)).(\(x+4\))
(2\(x-5\))(2\(x+1\)) - (\(2x-5\)).(\(x+4\)) = 0
(2\(x-5\))[2\(x+1\) - \(x-4\)] = 0
(2\(x-5\)).[(2\(x-x\)) - (4 - 1)] = 0
(2\(x\) - 5).[\(x\) - 3] = 0
\(\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {\(\dfrac{5}{2}\); 3}
a; (\(\sqrt{45}\) - \(\sqrt{125}\) + \(\sqrt{20}\)) : \(\sqrt{5}\)
= (\(\sqrt{9.5}\) - \(\sqrt{25.5}\) + \(\sqrt{4.5}\)):\(\sqrt{5}\)
= (3\(\sqrt{5}\) - 5\(\sqrt{5}\) + 2\(\sqrt{5}\)): \(\sqrt{5}\)
= (- 2\(\sqrt{5}\) + 2\(\sqrt{5}\)) : \(\sqrt{5}\)
= 0 : \(\sqrt{5}\)
= 0