8)tam giác ABC nhọn . Vẽ đg tròn O dg kính BC đường tròn cắt AB,AC tại D và E . H là giao điểm BE và CD
CMR CD vuông góc AB và BE vuông góc AC và AH vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F M N K
Xét tg AEF có
AE=AF (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn...)
=> tg AEF cân tại A \(\Rightarrow\widehat{AEF}=\widehat{AFE}\) (góc ở đáy tg cân)
Ta có
\(\widehat{AEF}=\widehat{MEB}\) (góc đối đỉnh)
\(\widehat{AFE}=\widehat{KFC}\) (góc đối đỉnh)
\(\Rightarrow\widehat{MEB}=\widehat{KFC}\)
Xét tg vuông MEB và tg vuông KFC có
\(\widehat{MEB}=\widehat{KFC}\left(cmt\right)\)
=> tg MEB đồng dạng với tg KFC (g.g.g)
`(xsqrt{x} - 1)/(x + sqrt{x} + 1) ` với `x > 0; x ne 1`
`= ((sqrt{x})^3 - 1^3)/(x + sqrt{x} + 1)`
`= ((sqrt{x} -1)(x + sqrt{x} + 1))/(x + sqrt{x} + 1)`
`= sqrt{x} -1`
`(x^2 - 4sqrt{3}x + 12)/(x - 2sqrt{3}) (x ne 2sqrt{3})`
`= (x^2 - 2x . 2sqrt{3} + (2sqrt{3})^2)/(x - 2sqrt{3}) `
`= ( (x -2 sqrt{3} )^2)/(x - 2sqrt{3}) `
`= x - 2sqrt{3}`
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
\(\dfrac{x-2}{\sqrt{x}+\sqrt{2}}=\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{\sqrt{x}+\sqrt{2}}=\sqrt{x}-\sqrt{2}\)
Bài 3:
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{12^2-5^2}=\sqrt{144-25}=\sqrt{119}\simeq10,9\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{12}\)
nên \(\widehat{B}\simeq24^037'\)
=>\(\widehat{C}=90^0-\widehat{B}\simeq65^023'\)
2: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-47^0=43^0\)
Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}\)
=>\(AB=AC\cdot tanC=5\cdot tan47\simeq5,4\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC\simeq\sqrt{5,4^2+5^2}\simeq7,4\)
3: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-74^0=16^0\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(AC=7\cdot tan74\simeq24,4\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC\simeq\sqrt{24,4^2+7^2}\simeq25,4\)
4: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{12^2+13^2}=\sqrt{313}\simeq17,7\)
Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}=\dfrac{13}{12}\)
nên \(\widehat{C}\simeq47^017'\)
=>\(\widehat{B}=90^0-\widehat{C}\simeq42^043'\)
a: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{1}{2}\right\}\)
\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}-\dfrac{x-5}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-\left(x+1\right)+2\left(x-1\right)-x+5}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-x-1+2x-2-x+5}{-2x+1}=\dfrac{2}{-2x+1}\)
b: Để A>0 thì \(\dfrac{2}{-2x+1}>0\)
mà 2>0
nên -2x+1>0
=>-2x>-1
=>\(x< \dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x\ne-1\end{matrix}\right.\)
a: \(x^2-3x+1>2\left(x-1\right)-x\left(3-x\right)\)
=>\(x^2-3x+1>2x-2-3x+x^2\)
=>-3x+1>-x-2
=>-2x>-3
=>\(x< \dfrac{3}{2}\)
b: \(\left(x-1\right)^2+x^2< =\left(x+1\right)^2+\left(x+2\right)^2\)
=>\(x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)
=>-2x+1<=6x+5
=>-7x<=4
=>\(x>=-\dfrac{4}{7}\)
c:
\(\left(x^2+1\right)\left(x-6\right)< =\left(x-2\right)^3\)
=>\(x^3-6x^2+x-6< =x^3-6x^2+12x-8\)
=>x-6<=12x-8
=>-11x<=-8+6=-2
=>\(x>=\dfrac{2}{11}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC