làm tròn số 345,678 đến hàng phần mười ta được số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{5}\)(\(x-\dfrac{5}{4}\)) + 0,4\(x\) = - \(\dfrac{1}{2}\)
\(\dfrac{3}{5}x\) - \(\dfrac{3}{4}\) + 0,4\(x\) = - \(\dfrac{1}{2}\)
\(0,6x+0,4x\) = \(-\dfrac{1}{2}\) + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4}\)
20% .x+2/5=1,2 -8/5
20%. x +2/5=-2/5
20%.x =-2/5+2/5
20%.x=0
x=0/20%
x=0
Vì mik ko vt đc dấu phần trằm nên copy phần trăm trên gg mới ra mực xanh , thông cảm nha
\(1,2-20\%\cdot x+\dfrac{2}{5}=1\dfrac{3}{5}\)
=>\(1,2+0,4-0,2\cdot x=1,6\)
=>1,6-0,2x=1,6
=>0,2x=0
=>x=0
\(\dfrac{5}{6}+\dfrac{11}{12}+...+\dfrac{9701}{9702}+\dfrac{9899}{9900}\)
\(=1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{9702}+1-\dfrac{1}{9900}\)
\(=1-\dfrac{1}{2\cdot3}+1-\dfrac{1}{3\cdot4}+...+1-\dfrac{1}{99\cdot100}\)
\(=98-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=98-\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=98-\dfrac{49}{100}=97,51\)
1)\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2023.2024}\)
\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2023.2024}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(=2\left(1-\dfrac{1}{2024}\right)\)
\(=2\cdot\dfrac{2023}{2024}=\dfrac{2023}{1012}\)
2)
a/\(\dfrac{n}{n+2}+\dfrac{5}{n+2}=\dfrac{n+5}{n+2}=\dfrac{\left(n+2\right)+3}{n+2}=1+\dfrac{3}{n+2}\)
Để \(\dfrac{n}{n+2}+\dfrac{5}{n+2}\) là số nguyên thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
\(n+2\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(n\) | \(-5\) | \(-3\) | \(-1\) | \(1\) |
Vậy để \(\dfrac{n}{n+2}+\dfrac{5}{n+2}\) nguyên thì \(n\in\left\{-5;-3;-1;1\right\}\)
b/\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2023.2025}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2023.2025}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2023}-\dfrac{1}{2025}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2025}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2024}{2025}=\dfrac{1012}{2025}\)
1) \(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+...+\dfrac{2}{2023.2024}\)
\(A=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2023.2024}\right)\\ A=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\\ A=2\left(1-\dfrac{1}{2024}\right)\\ A=2\cdot\dfrac{2023}{2024}=\dfrac{2023}{1012}\)
345,7
345,7 nha bạn