cho tam giác ABC có bc=2a2.sinB.sinC.Tính góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(\Sigma_{cyc}\frac{a}{\sqrt{a+b}}\right)^2=\)\(\left(\Sigma_{cyc}\sqrt{a\left(5a+b+9c\right)}.\sqrt{\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}}\right)^2\)
\(\le\left(\Sigma_{cyc}a\left(5a+b+9c\right)\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)
\(=5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)
Đến đây, ta cần chứng minh \(5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{25}{16}\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{5}{16}\)
Thật vậy, ta có: \(\frac{5}{16}-\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\)
\(\Leftrightarrow\frac{\sum_{cyc}ab(a+b)(a+9b)(a-3b)^2+243\sum_{cyc}a^3b^2c+835\sum_{cyc}a^3bc^2+232\sum_{cyc}a^4bc+1230a^2b^2c^2}{16(a+b)(b+c) (c+a)\prod_{cyc}(5a+b+9c)}\ge 0\) (đúng)
(Minh gõ bằng Latex, bạn chịu khó vô trang cá nhân của mình nhé, ngày 17/6 nha)
Đẳng thức xảy ra khi \(a=3b;c=0\)
đẳng thức \(\Leftrightarrow\)\(\left(\sin A-\sin B\right)^2+\left(\cos C-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\sin A=\sin B\\\cos C=\frac{1}{2}\end{cases}}\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Ta có: \(bc=2a^2\sin B.\sin C\)
=> \(2a^2.\frac{\sin B}{b}.\frac{\sin C}{c}=1\)
=> \(2a^2.\frac{\sin^2A}{a^2}=1\)
=> \(2\sin^2A-1=0\)
=> \(\cos2A=0\)
<=> \(2A=\frac{\pi}{2}+k\pi\)
<=> \(A=\frac{\pi}{4}+\frac{k\pi}{2}\)
Vì \(0< A< \pi\)
=> \(A=\frac{\pi}{4}\) hoặc \(A=\frac{3\pi}{4}\)