cứu cứu cần gấp huhuhuhuhu!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) (3x + 4)(3x - 4) - (2x + 5)² = (x - 5)² + (2x + 1)² - (x² - 2x) + (x - 1)²
9x² - 16 - 4x² - 20x - 25 = x² - 10x + 25 + 4x² + 4x + 1 - x² + 2x + x² - 2x + 1
5x² - 20x - 41 = 5x² - 6x + 27
5x² - 5x² - 20x + 6x = 27 + 41
-14x = 68
i) -5(x + 3)² + (x - 1)(x + 1) + (2x - 3)² = (5x - 2)² - 5x(5x + 3)
-5(x² + 6x + 9) + x² - 1 + 4x² - 12x + 9 = 25x² - 20x + 4 - 25x² - 15x
-5x² - 30x - 45 + x² - 1 + 4x² - 12x + 9 = -35x + 4
-42x - 37 = -35x + 4
-42x + 35x = 4 + 37
-7x = 41
a) (-x + 5)(x - 2) + (x - 7)(x + 7) = (3x + 1)² - (3x - 2)(3x + 2)
-x² + 2x + 5x - 10 + x² - 49 = 9x² + 6x + 1 - 9x² + 4
7x - 59 = 6x + 5
7x - 6x = 5 + 59
x = 64
b) (5x - 1)(x + 1) - 2(x - 3)² = (x + 2)(3x - 1) - (x + 4)² + (x² - x)
5x² + 5x - x - 1 - 2(x² - 6x + 9) = 3x² - x + 6x - 2 - x² - 8x - 16 + x² - x
5x² + 4x - 1 - 2x² + 12x - 18 = 3x² - 4x - 18
3x² + 16x - 19 = 3x² - 4x - 18
3x² + 16x - 3x² + 4x = -18 + 19
20x = 1
Bài 2:
\(a,x-\dfrac{3}{10}=\dfrac{7}{15}\cdot\dfrac{3}{5}\\ =>x-\dfrac{3}{10}=\dfrac{7}{25}\\ =>x=\dfrac{7}{25}+\dfrac{3}{10}\\ =>x=\dfrac{29}{50}\\ b.2x+\dfrac{3}{2}=\dfrac{-2}{5}\\ =>2x=\dfrac{-2}{5}-\dfrac{3}{2}\\ =>x=\dfrac{-4}{10}-\dfrac{15}{10}=\dfrac{-19}{10}\\ =>x=\dfrac{-19}{10}:2=-\dfrac{19}{20}\\ c,\left(x-\dfrac{1}{2}\right)^3=-8\\ =>\left(x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\\ =>x-\dfrac{1}{2}=-2\\ =>x=-2+\dfrac{1}{2}\\ =>x=\dfrac{-3}{2}\\ d,\left(\dfrac{7}{5}\right)^x=\dfrac{49}{25}\\ =>\left(\dfrac{7}{5}\right)^x=\left(\dfrac{7}{5}\right)^2\\=>x=2\)
Câu 3:
a: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(\widehat{yOz}=180^0-\widehat{xOz}=180^0-60^0=120^0\)
b: Ot là phân giác của góc yOz
=>\(\widehat{yOt}=\widehat{zOt}=\dfrac{\widehat{yOz}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{xOt}+\widehat{yOt}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}+60^0=180^0\)
=>\(\widehat{xOt}=120^0\)
c: Ta có: \(\widehat{xOm}=\widehat{yOt}\)(hai góc đối đỉnh)
mà \(\widehat{yOt}=60^0\)
nên \(\widehat{xOm}=60^0\)
Ta có: \(\widehat{xOm}=\widehat{xOz}\left(=60^0\right)\)
=>Ox là phân giác của góc mOz
Câu 1:
b: \(\dfrac{11}{2}\cdot4\dfrac{5}{3}-2\dfrac{5}{3}\cdot\dfrac{11}{2}\)
\(=\dfrac{11}{2}\left(4+\dfrac{5}{3}-2-\dfrac{5}{3}\right)\)
\(=\dfrac{11}{2}\cdot2=11\)
d: \(\left(\dfrac{3}{7}\right)^0\cdot1^{15}+\dfrac{7}{9}:\left(\dfrac{2}{3}\right)^2-\dfrac{4}{5}\)
\(=1\cdot1+\dfrac{7}{9}:\dfrac{4}{9}-\dfrac{4}{5}\)
\(=1-\dfrac{4}{5}+\dfrac{7}{4}=\dfrac{1}{5}+\dfrac{7}{4}=\dfrac{4}{20}+\dfrac{35}{20}=\dfrac{39}{20}\)
Diện tích hình vuông có cạnh 8cm là:
8 x 8 = 64(cm2)
Bán kính hình tròn là:
8:2=4(cm)
Diện tích hình tròn đó là:
4 x 4 x3,14 = 50,24 (cm2)
D/S:............
A B C D E F M N K
Xét tg AEF có
AE=AF (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn...)
=> tg AEF cân tại A \(\Rightarrow\widehat{AEF}=\widehat{AFE}\) (góc ở đáy tg cân)
Ta có
\(\widehat{AEF}=\widehat{MEB}\) (góc đối đỉnh)
\(\widehat{AFE}=\widehat{KFC}\) (góc đối đỉnh)
\(\Rightarrow\widehat{MEB}=\widehat{KFC}\)
Xét tg vuông MEB và tg vuông KFC có
\(\widehat{MEB}=\widehat{KFC}\left(cmt\right)\)
=> tg MEB đồng dạng với tg KFC (g.g.g)
`(xsqrt{x} - 1)/(x + sqrt{x} + 1) ` với `x > 0; x ne 1`
`= ((sqrt{x})^3 - 1^3)/(x + sqrt{x} + 1)`
`= ((sqrt{x} -1)(x + sqrt{x} + 1))/(x + sqrt{x} + 1)`
`= sqrt{x} -1`
Bổ sung đề bài: `x ∈ Z`
Ta có điều kiện: `x + 1 ne 0 <=> x ne - 1`
Do `x ∈ Z => 2x - 1` và `x+1 ∈ Z`
`B = (2x - 1)/(x+1)`
`= (2x + 2 - 3)/(x+1)`
`= (2(x+1))/(x+1) - 3/(x+1)`
`= 2 - 3/(x+1)`
Để `B ∈ Z` thì: `3/(x+1) ∈ Z `
`<=> x + 1 ∈ Ư(3) = {-3;-1;1;3}`
`<=> x ∈ {-4;-2;0;2} ` (Thỏa mãn)
Vậy ...
Bài 6:
a) Ta có:
\(\sqrt{x+7}\ge0\forall\left(x\ge-7\right)\\ =>2\sqrt{x+7}\ge0\forall\left(x\ge-7\right)\\ =>A=2\sqrt{x+7}-5\ge-5\forall\left(x\ge-7\right)\)
Dấu "=" xảy ra: `x+7=0`
`<=>x=-7`
b) Ta có:
\(\sqrt{x-8}\ge0\forall\left(x\ge8\right)\\ =>\dfrac{1}{2}\sqrt{x-8}\ge0\forall\left(x\ge8\right)\\ =>A=-12+\dfrac{1}{2}\sqrt{x-8}\ge0\forall\left(x\ge8\right)\)
Dấu "=" xảy ra: `x-8<=>x=8`
Bài 7:
a: ĐKXĐ: x>=0
\(-\dfrac{1}{4}\sqrt{x}< =0\forall x\) thỏa mãn ĐKXĐ
=>\(B=-\dfrac{1}{4}\sqrt{x}+4< =4\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
b: ĐKXĐ: \(\left[{}\begin{matrix}x>=2\\x< =-2\end{matrix}\right.\)
\(\sqrt{x^2-4}>=0\forall x\) thỏa mãn DKXĐ
=>\(-\dfrac{1}{4}\sqrt{x^2-4}< =0\forall x\) thỏa mãn ĐKXĐ
=>\(B=-\dfrac{1}{4}\sqrt{x^2-4}+1< =1\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(x^2-4=0\)
=>\(x^2=4\)
=>\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)