bài 1
a)4x^2-6x
b) 9x^4y^3+3x^2y^4
c)3(x-y)-5x(y-x)
d) 5x (x-3y)-15x(3y-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H N I E Q K D
a/
\(BN\perp AC;MH\perp AC\) => MH//BN
Xét tg BNC có
MH//BN
MB=MC
=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
MH//BN. Xét tg AMH
\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)
Mà IM=IH => ED=EN
b/
Xét tg vuông ABN có
\(BN^2=AB^2-AN^2=AC^2-AN^2=\)
\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)
\(=AC^2-AC^2+4AC.HN-4HN^2=\)
\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)
\(=4HN.HA\)
Xét tg BCN có
MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)
Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)
Ta có
\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)
\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)
Ta có : \(B\text{=}4x^2-12x+9\)
\(B\text{=}\left(2x-3\right)^2\)
Với \(x\text{=}\dfrac{1}{2}\)
\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)
\(B\text{=}\left(-2\right)^2\text{=}4\)
Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)
\(A\text{=}10x^2\)
Với \(x\text{=}-\dfrac{1}{5}\)
\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)
B = 4x² - 12x + 9
= (2x - 3)²
Tại x = 1/2 ta có:
B = (2.1/2 - 3)²
= (-2)²
= 4
-------------------
A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²
= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36
= 10x²
Tại x = 1/5 ta có:
A = 10.(1/5)²
= 2/5
\(\left\{{}\begin{matrix}4x^2+9y^2=9\\A=x-2y+3\end{matrix}\right.\)
Áp dụng bất đẳng thức Bunhiacopxki cho các cặp số \(\left(\dfrac{1}{2};2x\right);\left(-\dfrac{2}{3};3y\right)\)
\(x-2y=\dfrac{1}{2}.x+\left(-\dfrac{2}{3}\right).3y\)
\(\Rightarrow\left[\dfrac{1}{2}.2x+\left(-\dfrac{2}{3}\right).3y\right]^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=\dfrac{25}{36}.9\)
\(\Rightarrow x-2y\le\dfrac{5}{6}.3=\dfrac{5}{2}\)
\(\Rightarrow A=x-2y+3\le\dfrac{5}{2}+3\)
\(\Rightarrow A=x-2y+3\le\dfrac{11}{2}\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{\dfrac{1}{2}}{2x}=\dfrac{-\dfrac{2}{3}}{3y}\)
\(\Rightarrow\dfrac{2x}{\dfrac{1}{2}}=\dfrac{3y}{-\dfrac{2}{3}}\)
\(\Rightarrow\dfrac{4x^2}{\dfrac{1}{4}}=\dfrac{9y^2}{\dfrac{4}{9}}=\dfrac{4x^2+9y^2}{\dfrac{1}{4}+\dfrac{4}{9}}=\dfrac{9}{\dfrac{25}{36}}=\dfrac{9.36}{25}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{9.36}{25}.\dfrac{1}{16}\\y^2=\dfrac{9.36}{25}.\dfrac{4}{36}=\dfrac{9.4}{25}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.6}{5}.\dfrac{1}{4}=\dfrac{9}{10}\\y=\dfrac{3.2}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy \(GTLN\left(A\right)=\dfrac{11}{2}\left(tạix=\dfrac{9}{10};y=\dfrac{6}{5}\right)\)
Lời giải:
Vì $ABCD$ là hình bình hành nên $AO=OC$
Xét tam giác $AHO$ và $CKO$ có:
$\widehat{AHO}=\widehat{CKO}=90^0$
$\widehat{AOH}=\widehat{COK}$ (đối đỉnh)
$AO=CO$
$\Rightarrow \triangle AHO=\triangle CKO$ (ch-gn)
$\Rightarrow AH=CK$
Tứ giác $AHCK$ có 2 cạnh đối $AH, CK$ song song (do cùng vg với $BD$) và bằng nhau nên $AHCK$ là hbh.
a, - \(\dfrac{1}{3}\).\(xy\).(3\(x^3\).y2 - 6\(x^2\) + y2)
= - \(x^4\).y3 + 2\(x^3\).y - \(\dfrac{1}{3}\).\(xy^3\)
b, (2\(x\) -3).(4\(x\)2 + 6\(x\) + 9)
= (2\(x\))3 - 33
= 8\(x^3\) - 27
Xét Δ AQN và Δ MBN có :
\(\widehat{QAM}=\widehat{MBN}=90^o\)
\(AM=BM\) (M là trung điểm AB)
\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)
⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)
\(\Rightarrow QM=MN\left(1\right)\)
Chứng minh tương tự :
- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)
- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)
- Δ PNC và Δ MBN (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)
\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)
⇒ Tứ giác MNQP là hình thoi (dpcm)
Gọi 2 số tự nhiên đó là: a; a-1\(\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(a^2-\left(a-1\right)^2=31\)
\(\Leftrightarrow a^2-\left(a^2-2a+1\right)=31\)
\(\Leftrightarrow a^2-a^2+2a-1=31\)
\(\Leftrightarrow2a=31+1\)
\(\Leftrightarrow a=\dfrac{32}{2}=16\Rightarrow a-1=16=16-1=15\)
Vậy hai số đó là: \(15;16\)
Gọi hai số tự nhiên đó là a , a - 1 (a∈∈ N*)
Theo đề, ta có : a2−(a−1)2=31�2−(�−1)2=31
⇔a2−(a2−2a+1)=31⇔�2−(�2−2�+1)=31
⇔a2−a2+2a−1=31⇔�2−�2+2�−1=31
⇔2a=31+1⇔2�=31+1
⇔a=\(\dfrac{32}{2}\)
=16⇔�=322=16 ⇒a−1=16−1=15⇒�−1=16−1=15
Vậy : Hai số đó là 15; 16
a) Ta có:
\(4x^2-6x=\left(2x.2x-3\right)\)
b) Ta có:
\(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có:
\(x^3-2x^2+5x\)
\(=x\left(x^2-2x+5\right)\)
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(x-y\right)\left(3+5x\right)\)
d) \(5x\left(x-3y\right)-15x\left(3y-x\right)\)
\(=5x\left(x-3y\right)+15x\left(x-3y\right)\)
\(=\left(x-3y\right)\left(5x+15x\right)\)
\(=16x\left(x-3y\right)\)