cho hình bình hành ABCD trên tia đối của tia BA lấy điểm E sao cho B là trung điểm của AE
a,Chứng minh BECD là hình bình hành
b,Gọi O là gia điểm của 2 đường chéo AC và BD
c, Gọi I là trung điểm của CE.Chứng minh tứ giác OBIC là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
b: DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>F là trung điểm của AE
XétΔECA có F là trung điểm của EA
nên CF là đường trung tuyến của ΔECA
a: ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
\(P=\left(\dfrac{2x}{x+3}+\dfrac{x}{x-3}+\dfrac{3x^2+3}{9-x^2}\right):\left(\dfrac{2x-2}{x-3}-1\right)\)
\(=\dfrac{2x\left(x-3\right)+x\left(x+3\right)-3x^2-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x-2-x+3}{x-3}\)
\(=\dfrac{2x^2-6x+x^2+3x-3x^2-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{-3x-3}{x+1}\cdot\dfrac{1}{x+3}=-\dfrac{3}{x+3}\)
b: |x-2|=1
=>\(\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Khi x=1 thì \(P=\dfrac{3}{1+3}=\dfrac{3}{4}\)
c: Để P nguyên thì \(-3⋮x+3\)
=>\(x+3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-2;-4;0;-6\right\}\)
\(x^3+\left(1+x\right)^3-\left(2x+1\right)\left(x+1\right)=0\)
=>\(\left(x+x+1\right)\left[x^2-x\left(x+1\right)+\left(x+1\right)^2\right]-\left(2x+1\right)\left(x+1\right)=0\)
=>\(\left(2x+1\right)\left(x^2-x^2-x+x^2+2x+1-x-1\right)=0\)
=>\(\left(2x+1\right)\left(x^2\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
a: \(\left(y-\dfrac{x}{y}\right)\left(y^2+x+\dfrac{x^2}{y^2}\right)\)
\(=\left(y-\dfrac{x}{y}\right)\left(y^2+y\cdot\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\)
\(=y^3-\left(\dfrac{x}{y}\right)^3=y^3-\dfrac{x^3}{y^3}=\dfrac{y^6-x^3}{y^3}\)
b: \(P=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{x}{y}+\dfrac{1}{4}\right)\)
\(=x^3+\dfrac{x^2}{y}+\dfrac{1}{4}x-\dfrac{1}{2}x^2-\dfrac{x}{2y}-\dfrac{1}{8}\)
\(Q=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+2y^3\)
\(=x^3-y^3-x^3-y^3+2y^3\)
=0
\(P=\left(2x-1\right)\left(4x^2+2x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(2x\right)^3-1+x^3+1\)
\(=8x^3+x^3=9x^3\)
\(x^3-\dfrac{1}{8}\\ =x^3-\left(\dfrac{1}{2}\right)^3\\ =\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
a: \(P=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}=\dfrac{3^{64}-1}{2}\)
b: \(Q=\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\dfrac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)}{5^2-1}\)
\(=\dfrac{\left(5^{32}-1\right)\left(5^{32}+1\right)}{24}=\dfrac{5^{64}-1}{24}\)
a: Ta có: BA//CD
mà B\(\in AE\)
nên BE//CD
Ta có: BA=CD
BA=BE
Do đó: BE=CD
Xét tứ giác BECD có
BE//CD
BE=CD
Do đó: BECD là hình bình hành
c: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: BDCE là hình bình hành
=>BD//CE và BD=CE
Ta có:BD=CE
mà BD=2OB và CE=2CI
nên OB=CI
Xét tứ giác BOCI có
BO//CI
BO=CI
Do đó: BOCI là hình bình hành
có tick,giúp ạ