k= l x-1l +l x+7l
a, l x-5l - lx-7l
b, l 3x-5l - l 7-3x l
d, l 1-x l - l 2-x l
các bn giải chính xác giúp mình vs ạ( mình cảm ơn nhiều)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAN và ΔMBC có
MA=MB
\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)
MN=MC
Do đó: ΔMAN=ΔMBC
=>AN=BC
b: Xét ΔMBN và ΔMAC có
MB=MA
\(\widehat{BMN}=\widehat{AMC}\)(hai góc đối đỉnh)
MN=MC
Do đó: ΔMBN=ΔMAC
=>\(\widehat{MBN}=\widehat{MAC}\)
mà hai góc này là hai góc ở vị trí so le trong nên BN//AC
c: BN//AC
AB\(\perp\)AC
Do đó: BN\(\perp\)AB
\(5.3^x=15.3^5\)
\(5.3^x=5.3.3^5\)
\(5.3^x=5.3^6\)
\(3^x=3^6\)
\(x=6\)
`H=1+2.6+3.6^2+4.6^3+...+100.6^99`
`6H = 6+2.6^2+3.6^3+4.6^4+...+100.6^100`
`6H - H = (6+2.6^2+3.6^3+4.6^4+...+100.6^100)-(1+2.6+3.6^2+4.6^3+...+100.6^99)`
`5H = (6 - 2.6) + (2.6^2 - 3.6^2) + (3.6^3 - 4.6^3) + ... + (99. 6^99 - 100.6^99) + 100.6^100 - 1`
`5H = 100.6^100 - 1 + (-6) + (-6^2) + (-6^3) + ... + (-6^99)`
`5H = 100.6^100 - 1 - (6+6^2+6^3 + ... + 6^99)`
Đặt `S = 6+6^2+6^3 + ... + 6^99`
`6S = 6^2+6^3+6^4 + ... + 6^100`
`6S - S = (6^2+6^3+6^4 + ... + 6^100) - ( 6+6^2+6^3 + ... + 6^99)`
`5S = 6^100 - 6`
`S = ( 6^100 - 6)/5`
Khi đó: `5H = 100.6^100 - 1 - S`
`5H = 100.6^100 - 1 - ( 6^100 - 6)/5`
`5H = (500.6^100)/5 - 5/5 - ( 6^100 - 6)/5`
`5H = (500.6^100 - 5 - 6^100 + 6)/5`
`H = (499 . 6^100 + 1)/5`
Vậy ...
`S = 3^100 -3^99 +3^98 -3^97 +...+3^2 -3 +1`
`3S = 3^101 - 3^100 +3^99- 3^98+...+ 3^3 -3^2 +3`
`S + 3S = (3^100 -3^99 +3^98 -3^97 +...+3^2 -3 +1) + (3^101 - 3^100 +3^99- 3^98+...+ 3^3 -3^2 +3)`
`4S = 3^101 + (3^100 - 3^100) + (3^99 - 3^99) + ... + (3 - 3) + 1`
`4S = 3^101 + 1`
`S = (3^101 + 1)/4`
a: Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
=>x=3k; y=4k; z=5k
\(2x^2+2y^2+3z^2=-100\)
=>\(2\left(3k\right)^2+2\cdot\left(4k\right)^2+3\cdot\left(5k\right)^2=-100\)
=>\(125k^2=-100\)
=>\(k^2=-\dfrac{4}{5}\)(vô lý)
vậy: \(\left(x;y;z\right)\in\varnothing\)
b: 2x=y/3=z/5
=>\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
=>\(x=\dfrac{1}{2}k;y=3k;z=5k\)
\(x+y-\dfrac{z}{2}=-20\)
=>\(\dfrac{1}{2}k+3k-\dfrac{5k}{2}=-20\)
=>k=-20
=>\(x=\dfrac{1}{2}\cdot\left(-20\right)=-10;y=3\cdot\left(-20\right)=-60;z=5\cdot\left(-20\right)=-100\)
Ta có
\(111=3.37\Rightarrow n+2=\left\{3;37;111\right\}\Rightarrow n=\left\{1;35;109\right\}\)
\(\Rightarrow n-2=\left\{-1;33;107\right\}\)
Ta thấy n-2 =33 là bội của 11
=> n=35
Đặt \(A=-2^{49}-2^{48}-...-2^1-1\)
\(\Rightarrow-A=2^{49}+2^{48}+...+2^1+1\\ \Rightarrow-2A=2^{50}+2^{49}+...+2^2+2^1\\ \Rightarrow-A-\left(-2A\right)=\left(2^{49}+2^{48}+...+2^1+1\right)-\left(2^{50}+2^{49}+...+2^2+2^1\right)\\ A=1-2^{50}\)
Thay vào \(2^{50}-2^{49}-2^{48}-...-2^1-1\) được:
\(2^{50}-2^{49}-2^{48}-...-2^1-1\\
=2^{50}+1-2^{50}\\
=1\)
`S = 2^50 -2^49 -2^48 -...-2^1 -1`
`2S = 2^51 - 2^50 - 2^49 - ... - 2^2 - 2`
`2S - S = (2^51 - 2^50 - 2^49 - ... - 2^2 - 2) - (2^50 -2^49 -2^48 -...-2^1 -1)`
`S = 2^51 - 2^50 - 2^49 - ... - 2^2 - 2 - 2^50 +2^49 +2^48 +...+2^1 +1`
`S = 2^51 - 2^50 - 2^50 + 1`
`S = 2^51 - (2^50 + 2^50) + 1`
`S = 2^51 - 2.2^50 + 1`
`S = 2^51 - 2^51 + 1`
`S = 1`
Điều kiện; n nguyên
Ta có: \(\left(5\text{}n-9\right)⋮n\)
Vì \(5n⋮n\) nên \(-9⋮n\)
\(\Rightarrow n\inƯ\left(-9\right)=\left\{\pm1,\pm3,\pm9\right\}\) 9thỏa mãn)
Vậy...
Bổ sung: `n` thuộc `Z`
Ta có: `5n-9` và `n` thuộc `Z; n ≠ 0`
`5n - 9 ⋮ n`
Do `n ⋮ n => 5n ⋮ n`
`=> 9 ⋮ n`
`=> n` thuộc `Ư(9) =` {`-9;-3;-1;1;3;9`} (Thỏa mãn)
Vậy ...
Em cần làm gì với các biểu thức này?
43ttwtt