giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử năng suất dự định của tổ là $a$ sản phẩm/ ngày và làm trong $b$ ngày.
Theo bài ra ta có:
$ab=140$
$(a+4)(b-4)=140$
$\Leftrightarrow ab-4a+4b-16=140$
$\Leftrightarrow 140-4a+4b-16=140$
$\Leftrightarrow -a+b=4$
$\Leftrightarrow b=a+4$
Thay vào điều kiện $ab=140$ thì:
$a(a+4)=140$
$\Leftrightarrow a^2+4a-140=0$
$\Leftrightarrow (a-10)(a+14)=0$
$\Leftrightarrow a=10$ hoặc $a=-14$. Do $a>0$ nên $a=10$
Thực tế mỗi ngày tổ làm được: $a+4=10+4=14$ (sản phẩm)
Lời giải:
Giả sử theo kế hoạch mỗi ngày sản xuất $a$ sản phẩm và sản xuất trong $b$ ngày.
Theo bài ra ta có:
$ab=1100$
$(a+5)(b-2)=1100$
$\Leftrightarrow ab-2a+5b-10=1100$
$\Leftrightarrow 1100-2a+5b-10=1100$
$\Leftrightarrow 5b=2a+10$
Thay vào điều kiện $ab=1100$ thì:
$a.5b=5500$
$\Leftrightarrow a.(2a+10)=5500$
$\Leftrightarrow a(a+5)=2750$
$\Leftrightarrow a^2+5a-2750=0$
$\Leftrightarrow (a-50)(a+55)=0$
Do $a>0$ nên $a=50$
Vậy theo kế hoạch mỗi ngày phân xưởng sản xuất 50 sản phẩm.
Gọi x (sản phẩm) là số sản phẩm theo dự định mỗi ngày phân xưởng phải sản xuất (x > 0)
Số ngày sản xuất theo dự định: 1100/x (ngày)
Số sản phẩm thực tế mỗi ngày sản xuất được: x + 5 (sản phẩm)
Số ngày sản xuất thực tế: 1100/(x + 5) (ngày)
Theo đề bài, ta có phương trình:
1100/x - 1100/(x + 5) = 2
⇔ 1100(x + 5) - 1100x = 2x(x + 5)
⇔ 1100x + 5500 - 1100x = 2x² + 10x
⇔ 2x² + 10x - 5500 = 0
⇔ x² + 5x - 2750 = 0
⇔ x² - 50x + 55x - 2750 = 0
⇔ (x² - 50x) + (55x - 2750) = 0
⇔ x(x - 50) + 55(x - 50) = 0
⇔ (x - 50)(x + 55) = 0
⇔ x - 50 = 0 hoặc x + 55 = 0
*) x - 50 = 0
⇔ x = 50 (nhận)
*) x + 55 = 0
⇔ x = -55 (loại)
Vậy số sản phẩm mỗi ngày phân xưởng phải sản xuất theo kế hoạch là 50 sản phẩm
Lời giải:
Diện tích dùng để khâu quả bóng:
$4\times 3,14\times 3^2=113,04$ (cm2)
Gọi năng suất dự định là x(xϵN*;x<60)(bộ/ngày)
Năng suất thực tế là x+2(bộ/ ngày)
Thời gian dự định là 60/x(ngày)
Thời gian thực tế là 60/x -1(ngày)
Theo bài ra ta có phương trình:
(60/x-1).(x-2)=60
⇔x=10(t/m)
Số ngày dự định tổ đó hoàn thành công việc là 60/x=60/10=6(ngày)
Vậy...
Gọi số chi tiết máy tổ 1 sản xuất được trong tháng giêng là x(chi tiết)
(Điều kiện: \(x\in Z^+\))
Số chi tiết máy tổ 2 sản xuất được trong tháng giêng là:
900-x(chi tiết)
Số chi tiết máy tổ 1 làm được trong tháng II là:
\(x\left(1+15\%\right)=1,15x\)(chi tiết)
Số chi tiết máy tổ 2 làm được trong tháng II là:
\(\left(900-x\right)\cdot\left(1+10\%\right)=1,1\left(900-x\right)\)(chi tiết)
Tổng số chi tiết máy 2 tổ làm được trong tháng II là 1010 chi tiết nên 1,15x+1,1(900-x)=1010
=>0,05x+990=1010
=>0,05x=20
=>x=20:0,05=400(nhận)
Vậy: số chi tiết máy tổ 1 sản xuất được trong tháng giêng là 400(chi tiết)
số chi tiết máy tổ 2 sản xuất được trong tháng giêng là
900-400=500(chi tiết)
1: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)CD
Xét tứ giác OIAM có \(\widehat{OIM}=\widehat{OAM}=90^0\)
nên OIAM là tứ giác nội tiếp
=>O,I,A,M cùng thuộc một đường tròn
2: ΔOAM vuông tại A
=>\(AO^2+AM^2=MO^2\)
=>\(AM^2=\left(\dfrac{3R}{2}\right)^2-R^2=\dfrac{5}{4}R^2\)
Xét (O) có
\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{MAC}=\widehat{ADC}\)
Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC~ΔMDA
=>\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\)
=>\(MC\cdot MD=MA^2=\dfrac{5}{4}R^2\)
a: H là trung điểm của OD
=>\(OH=\dfrac{OD}{2}=\dfrac{R}{2}\)
\(OH\cdot OA=\dfrac{R}{2}\cdot2R=R^2\)
Xét ΔOHM và ΔOMA có
\(\dfrac{OH}{OM}=\dfrac{OM}{OA}\)
\(\widehat{HOM}\) chung
Do đó: ΔOHM~ΔOMA
=>\(\widehat{OHM}=\widehat{OMA}\)
=>\(\widehat{OMA}=90^0\)
=>AM là tiếp tuyến của (O)
b: Xét (O) có
\(\widehat{AMB}\) là góc tạo bởi tiếp tuyến MA và dây cung MB
\(\widehat{MCB}\) là góc nội tiếp chắn cung MB
Do đó; \(\widehat{AMB}=\widehat{MCB}\)
Xét ΔAMB và ΔACM có
\(\widehat{AMB}=\widehat{ACM}\)
\(\widehat{MAB}\) chung
Do đó: ΔAMB~ΔACM
=>\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\)
=>\(AM^2=AB\cdot AC\left(1\right)\)
Xét ΔOMA vuông tại M có MH là đường cao
nên \(AH\cdot AO=AM^2\left(2\right)\)
Từ (1),(2) suy ra \(AM^2=AB\cdot AC=AH\cdot AO\)
Lời giải:
a. PT hoành độ giao điểm của $(d)$ và $(P)$:
$x^2-mx-1=0(*)$
Ta thấy: $\Delta (*)=m^2+4>0$ với mọi $m\in\mathbb{R}$
$\Rightarrow$ PT $(*)$ có 2 nghiệm pb với mọi $m$
$\Rightarrow (P), (d)$ cắt nhau tại 2 điểm pb với mọi $m$
b.
$x_1,x_2$ là 2 nghiệm của $(*)$. Áp dụng định lý Viet:
$x_1+x_2=m$
$x_1x_2=-1$
Khi đó:
$M=(y_1-1)(y_2-1)+2(x_1+x_2)+3=(mx_1+1-1)(mx_2+1-1)+2(x_1+x_2)+3$
$=m^2x_1x_2+2(x_1+x_2)+3=m^2(-1)+2m+3$
$=-m^2+2m+3=4-(m^2-2m+1)=4-(m-1)^2\leq 4$ do $(m-1)^2\geq 0$ với mọi $m$
Vậy $M_{\max}=4$. Giá trị này đạt tại $m-1=0\Leftrightarrow m=1$