K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2022

`Answer:`

`1.`

Xét `f(x)=0`

`<=>(x+3)(x^2+5x-6)=0`

`<=>x+3=0` hoặc `x^2+5x-6=0`

`<=>x=-3` hoặc `(x-1)(x+6)=0`

`<=>x=-3` hoặc `x=1` hoặc `x=-6`

`f(x)=(x+3)(x-1)(x+6)`

undefined

Vậy ta có:

`f(x)>0<=>x\in(-6;-3)∪(1;+oo)`

`f(x)<0<=>x\in(-oo;-6)∪(-3;1)`

`f(x)=0<=>x\in{-6;-3;1}`

`2.`

undefined

`=>S=(-2;-6)∪[-2;1)∪(1;3]`

15 tháng 2 2022

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức, chú ý đến dấu đẳng thức xẩy ra thì ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}\)sẽ lớn hơn hoặc bằng:

\(\frac{16}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\frac{16}{\left(a+b+c\right)^2}+\frac{1}{3}\left(a+b+c\right)^2=12\)

\(\Rightarrow\)Ta cần chứng minh: \(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge18\)

Để ý tiếp bất đẳng thức Bunhiacopxki ta được:

\(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge\frac{6}{ab+bc+ca}\ge\frac{6}{\frac{1}{3}\left(a+b+c\right)^2}=18\)

Do đó ta có bất đẳng thức:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

`Answer:`

`a.` Có `A(3;1),B(4;2)`

\(\Rightarrow\hept{\begin{cases}\overrightarrow{OA}=\left(3;1\right)\\\overrightarrow{BA}=\left(x_A-x_B,y_A-y_B\right)=\left(-1;-1\right)\end{cases}}\)

`b.` Có \(\overrightarrow{OB}=\left(4;2\right)\)

\(\Rightarrow\overrightarrow{OA}.\overrightarrow{OB}=3.4+1.2=14\ne0\)

Vậy `OA` không vuông góc `OB`

15 tháng 2 2022

=1e+22

13 tháng 2 2022

x∈[2.88769272473254

21 tháng 2 2022

`Answer:`

`A=|x+2|+|x+5|=|x+2|+|-x-5|`

Mà \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|-x-5\right|\ge0\end{cases}}\Leftrightarrow\left|x+2\right|+\left|-x-5\right|\ge\left|x+2-x-5\right|=3\)

Vậy giá trị nhỏ nhất của `A=3<=>(x+2)(-x-5)>=0<=>-5<x<-2`

`B=|x-3|+|x-1|+|x+1|+|x+3|`

Mà `{(|x-3|>=0∀x),(|x-1|>=0∀x),(|x+1|>=0∀x),(|x+3|>=0∀x):}=>|x-3|+|x-1|+|x+1|+|x+3|>=0∀x`

Dấu "=" xảy ra `<=>{(x-3=0),(x-1=0),(x+1=0),(x+3=0):}<=>{(x=3),(x=1),(x=-1),(x=-3):}`