K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2024

Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)

\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10

Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)

Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)

NV
3 tháng 5 2024

Đề yêu cầu gì em? Hỏi có bao nhiêu số?

3 tháng 5 2024

Gọi số cần tìm có dạng là abcd ( a khác b khác c khác d)

a có 7 cách chọn

b có 6 cách

c có 5 cách 

d có 4 cách 

=> vậy có 7.6.5.4=840 số

3 tháng 5 2024

số cách chọn là 

12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1

NV
3 tháng 5 2024

Thay tọa độ A và B vào \(\Delta\) ta được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)

M thuộc \(\Delta\Rightarrow MA+MB\ge AB\)

Dấu "=" xảy ra khi M là giao điểm của \(\Delta\) và đường thẳng AB

\(\overrightarrow{AB}=\left(-1;3\right)\Rightarrow\) phương trình AB có dạng:

\(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y+1=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow S=4\)

3 tháng 5 2024

Cái  thì tui chịu

 

a: G là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_G\\y_A+y_B+y_C=3\cdot y_G\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_C+0+4=3\cdot\dfrac{7}{3}=7\\y_C+2+0=3\cdot1=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_C=3\\y_C=1\end{matrix}\right.\)

Vậy: C(3;1)

B(4;0); C(3;1)

\(\overrightarrow{BC}=\left(-1;1\right)\)

=>Vecto pháp tuyến là (1;1)

Phương trình tổng quát của đường thẳng BC là:

1(x-4)+1(y-0)=0

=>x-4+y=0

=>x+y-4=0

Bài 12:

a: (d): \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)

=>(d) đi qua T(-2;1) và có vecto chỉ phương là (-2;2)

(d')\(\perp\)(d) nên (d') nhận vecto (-2;2) làm vecto pháp tuyến

Phương trình (d') là:

-2(x-3)+2(y-1)=0

=>-(x-3)+(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

b: (d) có vecto chỉ phương là (-2;2)

=>(d) có vecto pháp tuyến là (2;2)=(1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+2+y-1=0

=>x+y+1=0

Tọa độ giao điểm H của (d) và (d') là:

\(\left\{{}\begin{matrix}x+y+1=0\\-x+y+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=-1\\-x+y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1-x=-1+\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)

c: A' đối xứng với A qua d

=>A'A\(\perp\)d

mà d'\(\perp\)d và \(A\in d'\)

nên d' chính là phương trình AA'

=>H là trung điểm của A'A

A(3;1); H(-3/2;1/2); A'(x;y)

H là trung điểm của A'A

=>\(\left\{{}\begin{matrix}x_A+x_{A'}=2\cdot x_H=-3\\y_A+y_{A'}=2\cdot y_H=2\cdot\dfrac{1}{2}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_{A'}+3=-3\\y_A+1=1\end{matrix}\right.\)

=>A'(-6;0)

Bài 13:

a: M(2;-5); N(4;-3)

Tọa độ tâm I là:

\(\left\{{}\begin{matrix}x=\dfrac{2+4}{2}=\dfrac{6}{2}=3\\y=\dfrac{-5+\left(-3\right)}{2}=-\dfrac{8}{2}=-4\end{matrix}\right.\)

I(3;-4); M(2;-5)

\(IM=\sqrt{\left(2-3\right)^2+\left(-5+4\right)^2}=\sqrt{2}\)

Phương trình (C) là:

\(\left(x-3\right)^2+\left(y+4\right)^2=IM^2=2\)

b: (C) có tâm là I(1;-2) và tiếp xúc với đường thẳng 4x-3y+5=0

=>Bán kính là \(R=d\left(I;4x-3y+5=0\right)=\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+5\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{15}{5}=3\)

Phương trình (C) là:

\(\left(x-1\right)^2+\left(y+2\right)^2=R^2=9\)

c: Gọi phương trình (C) là: \(x^2+y^2+2ax+2by+c=0\)

Thay x=1 và y=0 vào (C), ta được:

\(1^2+0^2+2\cdot a\cdot1+2\cdot b\cdot0+c=0\)

=>2a+c=-1(1)

Thay x=0 và y=-2 vào (C), ta được:

\(0^2+\left(-2\right)^2+2\cdot a\cdot0+2\cdot b\cdot\left(-2\right)+c=0\)

=>4-4b+c=0

=>-4b+c=-4(2)

Thay x=2 và y=3 vào (C), ta được:

\(2^2+3^2+2\cdot a\cdot2+2\cdot b\cdot3+c=0\)

=>4a+6b+c=-13(3)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+c=-1\\-4b+c=-4\\4a+6b+c=-13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+4b=-1+4=5\\-2a-6b=-1+13=12\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2b=5+12=17\\2a+4b=5\\2a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\2a=5-4b=5-4\cdot\dfrac{-17}{2}=5+34=39\\2a+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\a=\dfrac{39}{2}\\c=-1-2a=-1-2\cdot\dfrac{39}{2}=-40\end{matrix}\right.\)

Vậy: (C): \(x^2+y^2+39x-17y-40=0\)