Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có đỉnh A(2;1), điểm M(3;5) thuộc đoạn BC, điểm N(6;3) thuộc đoạn CD. Tìm toạ độ đỉnh C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)
\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10
Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)
Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)
Gọi số cần tìm có dạng là abcd ( a khác b khác c khác d)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=> vậy có 7.6.5.4=840 số
số cách chọn là
12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1
Thay tọa độ A và B vào \(\Delta\) ta được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)
M thuộc \(\Delta\Rightarrow MA+MB\ge AB\)
Dấu "=" xảy ra khi M là giao điểm của \(\Delta\) và đường thẳng AB
\(\overrightarrow{AB}=\left(-1;3\right)\Rightarrow\) phương trình AB có dạng:
\(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y+1=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow S=4\)
a: G là trọng tâm của ΔABC
=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_G\\y_A+y_B+y_C=3\cdot y_G\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_C+0+4=3\cdot\dfrac{7}{3}=7\\y_C+2+0=3\cdot1=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_C=3\\y_C=1\end{matrix}\right.\)
Vậy: C(3;1)
B(4;0); C(3;1)
\(\overrightarrow{BC}=\left(-1;1\right)\)
=>Vecto pháp tuyến là (1;1)
Phương trình tổng quát của đường thẳng BC là:
1(x-4)+1(y-0)=0
=>x-4+y=0
=>x+y-4=0
Bài 12:
a: (d): \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)
=>(d) đi qua T(-2;1) và có vecto chỉ phương là (-2;2)
(d')\(\perp\)(d) nên (d') nhận vecto (-2;2) làm vecto pháp tuyến
Phương trình (d') là:
-2(x-3)+2(y-1)=0
=>-(x-3)+(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
b: (d) có vecto chỉ phương là (-2;2)
=>(d) có vecto pháp tuyến là (2;2)=(1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+2+y-1=0
=>x+y+1=0
Tọa độ giao điểm H của (d) và (d') là:
\(\left\{{}\begin{matrix}x+y+1=0\\-x+y+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=-1\\-x+y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1-x=-1+\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)
c: A' đối xứng với A qua d
=>A'A\(\perp\)d
mà d'\(\perp\)d và \(A\in d'\)
nên d' chính là phương trình AA'
=>H là trung điểm của A'A
A(3;1); H(-3/2;1/2); A'(x;y)
H là trung điểm của A'A
=>\(\left\{{}\begin{matrix}x_A+x_{A'}=2\cdot x_H=-3\\y_A+y_{A'}=2\cdot y_H=2\cdot\dfrac{1}{2}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_{A'}+3=-3\\y_A+1=1\end{matrix}\right.\)
=>A'(-6;0)
Bài 13:
a: M(2;-5); N(4;-3)
Tọa độ tâm I là:
\(\left\{{}\begin{matrix}x=\dfrac{2+4}{2}=\dfrac{6}{2}=3\\y=\dfrac{-5+\left(-3\right)}{2}=-\dfrac{8}{2}=-4\end{matrix}\right.\)
I(3;-4); M(2;-5)
\(IM=\sqrt{\left(2-3\right)^2+\left(-5+4\right)^2}=\sqrt{2}\)
Phương trình (C) là:
\(\left(x-3\right)^2+\left(y+4\right)^2=IM^2=2\)
b: (C) có tâm là I(1;-2) và tiếp xúc với đường thẳng 4x-3y+5=0
=>Bán kính là \(R=d\left(I;4x-3y+5=0\right)=\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+5\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{15}{5}=3\)
Phương trình (C) là:
\(\left(x-1\right)^2+\left(y+2\right)^2=R^2=9\)
c: Gọi phương trình (C) là: \(x^2+y^2+2ax+2by+c=0\)
Thay x=1 và y=0 vào (C), ta được:
\(1^2+0^2+2\cdot a\cdot1+2\cdot b\cdot0+c=0\)
=>2a+c=-1(1)
Thay x=0 và y=-2 vào (C), ta được:
\(0^2+\left(-2\right)^2+2\cdot a\cdot0+2\cdot b\cdot\left(-2\right)+c=0\)
=>4-4b+c=0
=>-4b+c=-4(2)
Thay x=2 và y=3 vào (C), ta được:
\(2^2+3^2+2\cdot a\cdot2+2\cdot b\cdot3+c=0\)
=>4a+6b+c=-13(3)
Từ (1),(2),(3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+c=-1\\-4b+c=-4\\4a+6b+c=-13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+4b=-1+4=5\\-2a-6b=-1+13=12\\2a+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2b=5+12=17\\2a+4b=5\\2a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\2a=5-4b=5-4\cdot\dfrac{-17}{2}=5+34=39\\2a+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\a=\dfrac{39}{2}\\c=-1-2a=-1-2\cdot\dfrac{39}{2}=-40\end{matrix}\right.\)
Vậy: (C): \(x^2+y^2+39x-17y-40=0\)