Cho hàm số \(f\left(x\right)=\dfrac{a}{x}+1\left(x\ne0\right)\). Tính gần đúng giá trị của \(a\) thỏa mãn hệ thức \(f\left(f\left(-1\right)\right)+a=0\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho dãy số \(u_1=144;u_2=233;...;u_{n+1}=u_n+u_{n-1}\) với \(n\ge2\). Tính \(u_{37};u_{38};u_{39}\).
\(u_3=u_2+u_1\)
\(u_4=u_3+u_2=\left(u_2+u_1\right)+u_2=2u_2+u_1=\left(4-2\right)u_2+\left(4-3\right)u_1\)
\(u_5=u_4+u_3=\left(4-2\right)u_2+\left(4-3\right)u_1+u_2+u_1=\left(5-2\right)u_2+\left(5-3\right)u_1\)
...
\(\Rightarrow u_n=\left(n-2\right)u_2+\left(n-3\right)u_1\)
\(\Rightarrow u_{37}=35u_2+34u_1=...\)
Thực hiện các phép chia đa thức, thu được:
\(f\left(x\right)=\left(x+3\right)\left[x^2+\left(b-3\right)x+\left(c-3b+9\right)\right]+d-3c+9b-27\)
\(f\left(x\right)=\left(x-4\right)\left[x^2+\left(b+4\right)x+c+4b+16\right]+d+4c+16b+64\)
\(f\left(x\right)=\left(x+3\right)\left(x-4\right)\left(x+b+1\right)+\left(c+b+13\right)x+d+12b+12c\)
Theo đề bài, ta có \(d-3c+9b-27=1\) (1)
\(d+4c+16b+64=8\) (2)
\(b+1=-3\) \(\Leftrightarrow b=-4\)
và \(\left(b+c+13\right)x+d+12b+12c\ne0\) (3)
Thế \(b=-4\) vào (1) và (2), thu được
\(d-3c-36-27=1\Leftrightarrow d-3c=64\)
và \(d+4c-64+64=8\) \(\Leftrightarrow d+4c=8\)
Từ đó suy ra \(\left(c;d\right)=\left(-8;40\right)\)
Thử lại, thấy thỏa mãn.
Do đó, \(\left(b,c,d\right)=\left(-4,-8,40\right)\)
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2+4>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
- Với
\(x_1^2-2x_2=7\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2-2x_2=7\)
\(\Leftrightarrow2\left(m-1\right)x_1-\left(2m-3\right)-2x_2=7\)
\(\Leftrightarrow2mx_1-2\left(x_1+x_2\right)=2m+4\)
\(\Leftrightarrow mx_1-2\left(m-1\right)=m+2\)
\(\Leftrightarrow mx_1=3m\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\Rightarrow x_1=3\)
Thế vào \(x_1+x_2=2\left(m-1\right)\Rightarrow x_2=2m-5\)
Thế tiếp vào \(x_1x_2=2m-3\) \(\Rightarrow3\left(2m-5\right)=2m-3\)
\(\Rightarrow m=3\)
Vậy \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
\(B=\sqrt{\dfrac{8+\sqrt{15}}{2}}+\sqrt{\dfrac{8-\sqrt{15}}{2}}\)
\(B=\dfrac{\sqrt{8+\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-\sqrt{15}}}{\sqrt{2}}\)
\(B=\dfrac{\sqrt{2}\cdot\sqrt{8+\sqrt{15}}}{\sqrt{2}\cdot\sqrt{2}}+\dfrac{\sqrt{2}\cdot\sqrt{8-\sqrt{15}}}{\sqrt{2}\cdot\sqrt{2}}\)
\(B=\dfrac{\sqrt{16+2\sqrt{15}}}{2}+\dfrac{\sqrt{16-2\sqrt{15}}}{2}\)
\(B=\dfrac{\sqrt{\left(\sqrt{15}\right)^2+2\cdot\sqrt{15}\cdot1+1^2}}{2}+\dfrac{\sqrt{\left(\sqrt{15}\right)^2-2\cdot\sqrt{15}\cdot1+1^2}}{2}\)
\(B=\dfrac{\sqrt{\left(\sqrt{15}+1\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{15}-1\right)^2}}{2}\)
\(B=\dfrac{\sqrt{15}+1+\sqrt{15}-1}{2}\)
\(B=\dfrac{2\sqrt{15}}{2}\)
\(B=\sqrt{15}\)
A B C K D H I
a/ Ta có
\(\widehat{ADI}=\widehat{AKI}=90^o\)
=> D và K cùng nhìn AI dưới 1 góc \(90^o\) => D; K thuộc đường tròn đường kính AI => A; D; K; I cùng thuộc một đường tròn
b/ Xét tg vuông DAH và tg vuông ABC có
\(\widehat{DAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg DAH đồng dạng với ABC (g.g.g)
M A O B E F H K P Q
a/
Ta có
AE = HE; BF = HF (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> AE + BF = HE + HF = EF (dpcm)
b/ Gọi P; K; Q lần lượt là giao của OE; OM; OF với (O)
Ta có
sđ cung PA = sđ cung PH (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)
sđ cung QB = sđ cung QH (lý do như trên)
=> sđ cung PH + sđ cung QH = sđ cung PA + sđ cung QB
=> sđ cung APH = sđ cung BQH
Mà sđ cung APH + sđ cung BQH = sđ cung AKB
=> sđ cung APH = sđ cung BQH = \(\dfrac{sđcungAKB}{2}\) (1)
Ta có
sđ cung KA = sđ cung KB (Hai tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm chia đôi cung chắn bởi 2 tiếp điểm)
Mà sđ cung KA + sđ cung KB = sđ cung AKB
=> sđ cung KA = sđ cung KB = \(\dfrac{sđcungAKB}{2}\) (2)
Ta có
\(sđ\widehat{MOA}=sđcungKA=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (3)
\(sđ\widehat{FOE}=sđcungPHQ=sđcungPH+sđcungQH=\dfrac{sđcungAKB}{2}\) (góc ở tâm đường tròn) (4)
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{MOA}=\widehat{FOE}\)
\(n\) chẵn \(\Rightarrow n=2k\left(k\inℤ\right)\)
Khi đó \(P=\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)
\(=\dfrac{k}{6}+\dfrac{k^2}{2}+\dfrac{k^3}{3}\)
\(=\dfrac{k+3k^2+2k^3}{6}\)
\(=\dfrac{k\left(2k^2+3k+1\right)}{6}\)
\(=\dfrac{k\left(2k+1\right)\left(k+1\right)}{6}\)
Nhận thấy \(k,k+1\) là 2 số nguyên liên tiếp nên \(k\left(k+1\right)\left(2k+1\right)⋮2\)
Nếu \(k\equiv0,2\left[3\right]\) thì dễ thấy \(k\left(2k+1\right)\left(k+1\right)⋮3\). Nếu \(k\equiv1\left[3\right]\) thì \(2k+1\equiv2.1+1=3\left[3\right]\) nên \(k\left(2k+1\right)\left(k+1\right)⋮3\).
Do vậy, \(k\left(k+1\right)\left(2k+1\right)⋮6\). Suy ra đpcm.
- Phenis
- 21/04/2021
Giải thích các bước giải:
A=n12+n28+n324�=�12+�28+�324
=2n+3n2+n324=2�+3�2+�324
=n(n2+3n+2)24=�(�2+3�+2)24
=n24⋅(n2+3n+2)=�24⋅(�2+3�+2)
=n24[n(n+1)+2(n+1)]=�24[�(�+1)+2(�+1)]
=n(n+1)(n+2)24=�(�+1)(�+2)24
Vì n(n+1)(n+2)�(�+1)(�+2) là tích ba số nguyên liên tiếp nên chia hết cho 33
Lại có n� là số chẵn, nên đặt n=2k�=2�, ta có:
n(n+1)(n+2)=2k(2k+1)(2k+2)=4k(k+1)(2k+1)�(�+1)(�+2)=2�(2�+1)(2�+2)=4�(�+1)(2�+1)
Do k(k+1)�(�+1) là tích hai số nguyên liên tiếp nên chia hết cho 2 và 4k(k+1)(2k+1)4�(�+1)(2�+1) chia hết cho 8
Vậy A chia hết cho 3 và 8, vậy A chia hết cho 24
⇒A⇒� là số nguyên
Nhận thấy \(a\) phải là số nguyên tố lẻ.
Xét \(a=3\). Khi đó \(3^2+8=17\) là snt. Lúc này \(3^2+2=11\) cũng là snt (thỏa mãn).
Xét \(a>3\). Khi đó vì \(a\) là snt nên \(a⋮̸3\) \(\Rightarrow a^2\equiv1\left[3\right]\) \(\Rightarrow a^2+8⋮3\), không thỏa mãn.
Do đó để \(a\) và \(a^2+8\) là snt thì \(a=3\)
Vậy ta có đpcm.
Nếu \(a=2\Rightarrow a^2+8=12\) là hợp số (loại)
Nếu \(a=3\Rightarrow a^2+8=17\) cũng là SNT, khi đó \(a^2+2=11\) là SNT (thỏa mãn)
Nếu \(a>3\Rightarrow a\) ko chia hết cho 3 \(\Rightarrow a^2\) chia 3 luôn dư 1
\(\Rightarrow a^2+8\) chia hết cho 3 \(\Rightarrow\) là hợp số (loại)
Vậy ...
\(x^2+3y^2+4x+10y-14=0\)
\(\Leftrightarrow\left(x+2\right)^2+3y^2+10y=18\) (1)
\(\Rightarrow3y^2+10y\le18\)
\(\Rightarrow2y^2+8y\le3y^2+10y\le18\)
\(\Rightarrow2y^2+8y+8\le26\)
\(\Rightarrow\left(y+2\right)^2\le13\)
Mà \(y\) nguyên và \(y\ge0\) \(\Rightarrow y=\left\{0;1\right\}\)
- Với \(y=0\) thay vào (1) \(\Rightarrow\left(x+2\right)^2=18\) ko tồn tại x nguyên thỏa mãn
- Với \(y=1\) thay vào (1) \(\Rightarrow\left(x+2\right)^2+13=18\Rightarrow\left(x+2\right)^2=5\) không tồn tại x nguyên thỏa mãn
Vậy ko tồn tại các số nguyên không âm x; y thỏa mãn
\(f\left(-1\right)=-a+1\)
\(f\left(f\left(-1\right)\right)=f\left(-a+1\right)=\dfrac{a}{-a+1}+1=\dfrac{1}{-a+1}\)
\(f\left(f\left(-1\right)\right)+a=0\Rightarrow\dfrac{1}{-a+1}+a=0\)
\(\Rightarrow-a^2+a+1=0\) (\(a\ne1\))
\(\Rightarrow a=\dfrac{1\pm\sqrt{5}}{2}\)
\(a=\dfrac{1\pm\sqrt{5}}{2}\)