K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

Không mất tổng quát, giả sử \(BC=1\)

Từ gt \(\Rightarrow\widehat{BAC}=180^o-2\widehat{ABC}=28^o5'22''\)

Áp dụng định lý sin cho tam giác ABC, ta có:

\(\dfrac{AC}{\sin B}=\dfrac{BC}{\sin A}\Rightarrow AC=\dfrac{BC\sin B}{\sin A}\) \(=\dfrac{\sin\left(75^o57'19''\right)}{\sin\left(28^o5'22''\right)}=2k\)

Mà tam giác ABC cân tại A nên \(AB=AC=2k\)

\(\Rightarrow MB=MA=k\)

Có \(MC=\sqrt{\dfrac{2\left(CA^2+CB^2\right)-AB^2}{4}}\) \(=\sqrt{\dfrac{2\left(4k^2+1\right)-4k^2}{4}}\) \(=\dfrac{\sqrt{4k^2+2}}{2}\) (Công thức tính độ dài đường trung tuyến trong tam giác, mình không chứng minh ở đây nhé.)

 Áp dụng định lý sin cho tam giác ACM, có:

 \(\dfrac{AM}{\sin\widehat{ACM}}=\dfrac{CM}{\sin\widehat{A}}\) \(\Rightarrow\sin\widehat{ACM}=\dfrac{AM\sin A}{CM}\) \(=\dfrac{k\sin\left(28^o5'22''\right)}{\dfrac{\sqrt{4k^2+2}}{2}}\)

\(\Rightarrow...\)

 

30 tháng 12 2023

Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)

Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).

 Dễ thấy chữ số tận cùng của N là 6.

 Ta tính thử một vài giá trị của \(16^n\):

 \(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\)\(16^6=16777216\);...

 Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k.    (1)

 Chứng minh: (1) đúng với \(k=0\).

 Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5. 

 Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.

 Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:

\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)

 Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\).  (2)

 Chứng minh: (2) đúng với \(u=0\) 

 Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:

 \(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\) 

\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.

 Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.

 Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.

 Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)

 

 

30 tháng 12 2023

Ta tính một vài giá trị đầu của Un:

\(U_1=3;U_2=7;U_3=15;U_4=35;U_5=83\)

Đặt \(U_{n+1}=aU_n+bU_{n-1}+c\) (*)

Khi đó thay lần lượt \(n=2,n=3,n=4\) vào (*), ta có:

\(\left\{{}\begin{matrix}15=7a+3b+c\\35=15a+7b+c\\83=35a+15b+c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\\c=-2\end{matrix}\right.\)

Do đó \(U_{n+1}=2U_n+U_{n-1}-2\)

30 tháng 12 2023

a) tanB = AC/AB = 1/2

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= (2AC)² + AC²

= 5AC²

⇒ AC² = BC²/5

= 25/5

= 5

⇒ AC = √5

3 tháng 1 2024

vậy tính tanC sao ạ

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Tìm m để biểu thức thế nào hả bạn? Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Đổi 45'=0,75h và 30'=0,5h
Gọi vận tốc ban đầu là $a$ (km/h) và thời gian đi quãng đường là $b$ (giờ)

Độ dài quãng đường AB là:

$AB=ab = (a-10)(b+0,75)=(a+10)(b-0,5)$

$\Rightarrow ab=ab+0,75a-10b-7,5=ab-0,5a+10b-5$

$\Rightarrow 0,75a-10b=7,5$ và $-0,5a+10b=5$

$\Rightarrow a=50; b=3$ 

Vậy vận tốc dự định là 50 km/h, thời gian dự định là 3h

30 tháng 12 2023

Đổi 45 phút = 0,75 giờ; 30 phút = 0,5 giờ; Gọi vận tốc ban đầu, thời gian ban đầu lần lượt là: \(x\) (km/h); t (giờ); \(x\) > 0; t > 0,5 

Thì vận tốc lúc tăng, thời gian đi hết quãng đường với vận tốc tăng đó lần lượt là: \({}\)\(x\) + 10 (km/h); t  - 0,5 (giờ)

Và vận tốc lúc giảm; thời gian đi hết quãng đường với vận tốc giảm đó lần lượt là: \(x\) - 10 (km/h); t + 0,75 (giờ)

Do cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{x+10}{x}=\dfrac{t}{t-0,5}\left(1\right)\\\dfrac{x-10}{x}=\dfrac{t}{t+0,75}\end{matrix}\right.\)  cộng vế với vế ta có:  \(\dfrac{t}{t-0,5}\) + \(\dfrac{t}{t+0,75}\)= 2

⇒ 1 + \(\dfrac{0,5}{t-0,5}\)+ 1 -  \(\dfrac{0,75}{t+0,75}\) = 2 ⇒\(\dfrac{0,5}{t-0,5}\)=\(\dfrac{0,75}{t+0,75}\) 

⇒ 0,5.(t + 0,75) = 0,75.(t - 0,5)   ⇒ 0,5t + 0,375 = 0,75t - 0,375

⇒ 0,75t - 0,5t = 0,375 + 0,375 ⇒ 0,25t = 0,75 ⇒ t = 3; 

Thay t = 3 vào (1) ta có: \(\dfrac{x+10}{x}\) = \(\dfrac{3}{3-0,5}\) = 1,2  

⇒ \(x\) + 10 = 1,2\(x\) ⇒ 1,2\(x\) - \(x\) = 10 ⇒ 0,2\(x\) = 10 ⇒ \(x\) = 10: 0,2 = 50

Kết luận:...

 

 

 

 

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
a. Đề không đầy đủ. Bạn xem lại

b. Để hàm (1) nghịch biến thì: $m+1<0\Leftrightarrow m<-1$

c. Với $m=2$ thì hàm (1) là: $y=3x-2$

PT hoành độ giao điểm của $y=3x-2$ và $y=x-1$ là:

$3x-2=x-1$

$\Leftrightarrow 2x=1$

$\Leftrightarrow x=\frac{1}{2}$

$y=x-1=\frac{1}{2}-1=\frac{-1}{2}$

Vậy giao điểm của $y=3x-2$ và $y=x-1$ là: $(\frac{1}{2}; \frac{-1}{2})$