K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

   (\(x^2\) -  4\(xy\) + 4y2) - 25

= (\(x\) - 2y)2 - 25

= (\(x-2y\) - 5)(\(x-2y\) + 5)

15 tháng 8 2024

\(a,27x^3-1\\ =\left(3x^3\right)-1^3\\ =\left(3x-1\right)\left(9x^2+3x+1\right)\\ \)

Sửa:

\(b,8x^3+27\\ =\left(2x\right)^3+3^3\\ =\left(2x+3\right)\left(4x^2-6x+9\right)\)

a: \(27x^3-1=\left(3x\right)^3-1^3\)

\(=\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1^2\right]\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)\)

b: Sửa đề: \(8x^3+27\)

\(8x^3+27=\left(2x\right)^3+3^3\)

\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)

\(=\left(2x+3\right)\left(4x^2-6x+9\right)\)

16 tháng 8 2024

A B C D H E

Trên tia đối của AB lấy E sao cho AE=DC

Ta có DC//AB => DC//AE

=> AEDC là hình bình hành (Tứ giác có cặp cạnh đối // và = nhau là hbh)

Do ABCD là hình thang cân

\(\Rightarrow\widehat{BCD}=\widehat{ADC}\) (1)

Ta có AB//CD \(\Rightarrow\widehat{ADC}+\widehat{DAB}=180^o\) (2 góc trong cùng phí bù nhau) (2)

Mà \(\widehat{EAD}+\widehat{DAB}=\widehat{EAB}=180^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{EAD}=\widehat{BCD}\)

Xét tg EAD và tg BCD có

AE = CD; \(\widehat{EAD}=\widehat{BCD}\left(cmt\right)\); AD = BC (gt)

=> tg EAD = tg BCD (c.g.c) => ED=BD => tg BDE cân tại D

Dựng \(DH\perp AB\left(H\in AB\right)\Rightarrow BH=EH=\dfrac{BE}{2}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

Ta có

AE=CD \(\Rightarrow AB+CD=AB+AE=BE\)

\(DH=\dfrac{1}{2}\left(AB+CD\right)=\dfrac{1}{2}\left(AB+AE\right)=\dfrac{BE}{2}\)

\(\Rightarrow DH=BH=EH=\dfrac{BE}{2}\)

=> tg DHE và tg BHD là tg vuông cân tại H

\(\Rightarrow\widehat{DEH}=\widehat{EDH}=\widehat{BDH}=\widehat{DBH}=45^o\)

\(\Rightarrow\widehat{EDH}+\widehat{BDH}=\widehat{BDE}=45^o+45^o=90^o\Rightarrow ED\perp BD\)

Ta có

ED//AC (cạnh đối hbh AEDC)

\(\Rightarrow AC\perp BD\)

 

 

15 tháng 8 2024

loading...

a: Xét ΔBAG và ΔBCG có

BA=BC

\(\widehat{ABG}=\widehat{CBG}\)

BG chung

Do đó: ΔBAG=ΔBCG

=>GA=GC

=>ΔGAC cân tại G 

b: Ta có: BA=BC

=>B nằm trên đường trung trực của AC(1)

Ta có: GA=GC

=>G nằm trên đường trung trực của AC(2)

Từ (1),(2) suy ra BG là đường trung trực của AC

 

a: \(Q=\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x-2y\right)^2\)

\(=\left(x-y\right)\left(x-y-x-y\right)+\left(x-2y\right)^2\)

\(=-2y\left(x-y\right)+x^2-4xy+4y^2\)

\(=-2xy+2y^2+x^2-4xy+4y^2\)

\(=x^2-6xy+6y^2\)

b: \(\left(3x-1\right)^2-\left(x+7\right)^2-\left(2x-5\right)\left(2x+5\right)\)

\(=9x^2-6x+1-x^2-14x-49-\left(4x^2-25\right)\)

\(=8x^2-20x-48-4x^2+25=4x^2-20x-23\)

15 tháng 8 2024

Yêu cầu của đề bài là gì vậy em?

15 tháng 8 2024

\(a,y^2+2y+1=y^2+2.y.1+1^2=\left(y+1\right)^2\)

\(b,9x^2+y^2-6xy=\left(3x\right)^2-2\cdot3x\cdot y+y^2=\left(3x-y\right)^2\)

\(c,25a^2+4b^2+20ab=\left(5a\right)^2+2\cdot5a\cdot2b+\left(2b\right)^2=\left(5a+2b\right)^2\)

\(d,x^2-x+\dfrac{1}{4}=x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)

15 tháng 8 2024

`y^2 + 2y + 1 = y^2 + 2y .1 + 1^2 + (y+1)^2`

`9x^2 + y^2 - 6xy = (3x)^2 - 2.3x.y + y^2 = (3x + y)^2`

`25a^2 + 4b^2 + 20ab = (5a)^2 + 2.5a .2b + (2b)^2 = (5a + 2b)^2`

`x^2 - x + 1/4 = x^2  - 2x .1/2 +(1/2)^2 = (x-1/2)^2`

a: \(\dfrac{x-x^2}{5x^2-5}=\dfrac{x}{M}\)

=>\(M=\dfrac{x\left(5x^2-5\right)}{-x^2+x}=\dfrac{5x\left(x-1\right)\left(x+1\right)}{-x\left(x-1\right)}=-5\left(x+1\right)\)

=>M=-5x-5

b: \(\dfrac{x^2+8}{2x-1}=\dfrac{3x^3+24x}{M}\)

=>\(M=\dfrac{\left(2x-1\right)\left(3x^3+24x\right)}{x^2+8}=\dfrac{\left(2x-1\right)\cdot3x\left(x^2+8\right)}{\left(x^2+8\right)}\)

=>\(M=3x\left(2x-1\right)=6x^2-3x\)

c: \(\dfrac{M}{x-y}=\dfrac{3x^2-3xy}{3\left(y-x\right)^2}\)

=>\(\dfrac{M}{x-y}=\dfrac{3x\left(x-y\right)}{3\left(x-y\right)^2}=\dfrac{x}{x-y}\)

=>M=x

15 tháng 8 2024

Em cần làm gì với biểu thức này em nhỉ?

\(x^4+8x=0\)

=>\(x\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

15 tháng 8 2024

\(x^4\) + 8\(x\) = 0

\(x^{ }\)(\(x^3\) + 8) = 0

\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2; 0}

ΔAED vuông tại A

=>\(AE^2+AD^2=ED^2\)

ΔAEB vuông tại A

=>\(AE^2+AB^2=EB^2\)

ΔACD vuông tại A

=>\(AC^2+AD^2=CD^2\)

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)

\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)

Do đó: \(CD^2-CB^2=ED^2-EB^2\)