a[x] =2x^2+4,5x^5+x-4,5x^5+5-8x -2 a} thu gọn và sắp xếp theo số mũ giảm dần của biến c]xác định bậc hẹ số tự do của đa thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
3 × x - 10 = 2 × x + 13
=> 2 × x + 13 + 10 = 3 × x
Vậy x = 10 + 13 = 23
Tick cho mình nha
Lời giải:
$a^3+3a^2+5=5^b$
$\Rightarrow a^2(a+3)+5=5^b$
$\Rightarrow a^2.5^c+5=5^b$
$\Rightarrow 5(a^2.5^{c-1}+1-5^{b-1})=0$
$\Rightarrow a^2.5^{c-1}+1=5^{b-1}$
Nếu $b,c$ đều là số nguyên dương lớn hơn $1$ thì:
$1=5^{b-1}-a^2.5^{c-1}\vdots 5$ (vô lý)
Do đó trong 2 số $b,c$ tồn tại ít nhất 1 số nguyên dương bằng 1
Nếu $b=1$ thì:
$a^2.5^{c-1}+1=5^{1-1}=1\Rightarrow a^2.5^{c-1}=0$
$\Rightarrow a=0$ (không tm do $a$ nguyên dương)
Nếu $c=1$ thì $a+3=5^c=5\Rightarrow a=2$
$a^2.5^{c-1}+1=5^{b-1}$
$\Leftrightarrow a^2.5^{1-1}+1=5^{b-1}$
$\Leftrightarrow 2^2+1=5^{b-1}\Rightarrow b-1=1\Rightarrow b=2$
Vậy $(a,b,c)=(2,2,1)$
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là a(cây),b(cây),c(cây)
(Điều kiện: \(a,b,c\in Z^+\))
Số cây lớp 7A;7B;7C trồng được lần lượt tỉ lệ thuận với 9;8;7
=>\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}\)
Lớp 7C trồng ít hơn lớp 7A 10 cây nên ta có: a-c=10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{a-c}{9-7}=\dfrac{10}{2}=5\)
=>\(a=5\cdot9=45;b=5\cdot8=40;c=5\cdot7=35\)
Vậy: số cây lớp 7A,7B,7C trồng được lần lượt là 45 cây; 40 cây; 35 cây
a: \(3x^3+ax^2+bx+9⋮x^2-9\)
=>\(3x^3-27x+ax^2-9a+\left(b+27\right)x+9a+9⋮x^2-9\)
=>\(\left\{{}\begin{matrix}b+27=0\\9a+9=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-27\\a=-1\end{matrix}\right.\)
b: \(10n^2+n-10⋮n-1\)
=>\(10n^2-10n+11n-11+1⋮n-1\)
=>\(1⋮n-1\)
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
a: M là trung điểm của BC
=>\(BM=CM=\dfrac{BC}{2}\)
mà BA=BC/2
nên BM=CM=BA
Xét ΔBAD và ΔBMD có
BA=BM
\(\widehat{ABD}=\widehat{MBD}\)
BD chung
Do đó: ΔBAD=ΔBMD
b: ta có; ΔBAD=ΔBMD
=>\(\widehat{BAD}=\widehat{BMD}\)
Xét ΔBAC và ΔBME có
\(\widehat{BAC}=\widehat{BME}\)
BA=BM
\(\widehat{ABC}\) chung
Do đó: ΔBAC=ΔBME
=>BE=BC
=>ΔBEC cân tại B
Ta có: ΔBEC cân tại B
mà BD là đường phân giác
nên DB là đường trung tuyến
=>N là trung điểm của EC
Xét ΔEBC có
BN,EM là các đường trung tuyến
BN cắt EM tại D
Do đó: D là trọng tâm của ΔEBC
=>BD/DN=2
Đồ thị hàm số đi qua A(- \(\dfrac{1}{2}\); 1)
⇔ m.|- \(\dfrac{1}{2}\)| + 2.(-\(\dfrac{1}{2}\)) = 1
\(\dfrac{1}{2}\)m - 1 = 1
\(\dfrac{1}{2}\)m = 2
m = 2 x 2
m = 4
Kết luận với m = 4 thì đồ thị hàm số đi qua A(- \(\dfrac{1}{2}\); 1)
Do AM là tia phân giác của ∠BAC (gt)
⇒ ∠BAM = ∠CAM
⇒ ∠BAM = ∠NAM
Xét ∆ABM và ∆ANM có:
AB = AN (gt)
∠BAM = ∠NAM (cmt)
AM là cạnh chung
⇒ ∆ABM = ∆ANM (c-g-c)
⇒ MB = MN (hai cạnh tương ứng)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-65^0=115^0\)
=>\(\widehat{IBC}+\widehat{ICB}=57,5^0\)
Xét ΔIBC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=>\(\widehat{BIC}=180^0-57,5^0=122,5^0\)
a: Ta có: \(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACE}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔADB và ΔAEC có
\(\widehat{ABD}=\widehat{ACE}\)
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: Ta có: ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
Bạn có thể ghi đề rõ ra không?
mình đag cần gấp bn có thể giúp luôn đc k