Giúp mik với
Cho tam giác ABC có AB < AC . Tia phân giác góc BAC cắt cạnh BC tại D . Trên cạnh AC lấy E sao cho AE = AB
a) CM : Tam giác ABD = tam giác AED , từ đó suy ra AD vuông góc với BE ( phải từ CM đằng trước suy ra nhé )
b) Tia ED cắt AB tại F . CM tamm giác BDF = tam giác EDC
c) CM AI vuông góc BC
d) CM BD<DC
=>BD=DE
=>D nằm trên đường trung trực của BE(1)
Ta có: AB=AE
=>A nằm trên đường trung trực của BE(2)
Từ (1),(2) suy ra AD là đường trung trực của BE
=>AD\(\perp\)BE
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
mà \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)
và \(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
nên \(\widehat{DBF}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDBF=ΔDEC
d: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
mà AB<AC
nên BD<CD
a) Do AE = AB và AD là tia phân giác của góc BAC nên tam giác ABD = tam giác AED (theo định lý cạnh góc cạnh).
Từ đó, suy ra AD vuông góc với BE (do hai tam giác cân tại D).
b) Do tam giác ABD = tam giác AED nên góc BAD = góc EAD.
Lại có góc BAF = góc EAD (cùng chắn cung BE).
Suy ra tam giác BAF = tam giác EAD (theo định lý góc cạnh góc).
Do đó, tam giác BDF = tam giác EDC.
c) Để chứng minh AI vuông góc BC, cần phải xác định rõ vị trí của điểm I. Nếu I là trung điểm của BD thì AI sẽ vuông góc với BC.
d) Do AB < AC và tam giác ABD = tam giác AED nên BD < DC.