có 1 hộp gồm 15 bi xanh và 20 bi đỏ. lấy từ hộp ra 1 bi nếu lấy được bi xanh thì bỏ vào hộp 1 bi đỏ. nếu lấy được bi đỏ thì bỏ vào hộp 1 bi xanh. bây giờ lấy ra 3 bi tính sác xuất để được 2 bi xanh trong 3 bi lấy ra.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
bạn xem lại sách nhé. tính f', tìm nghiệm f'=0, xét dấu f', xác định tính đơn điệu của hàm số, tìm các điểm cực trị. Vẽ đồ thị hàm số
hàm số đã cho xác định và liên tục trên đoạn \(\left[\dfrac{\pi}{12};\dfrac{\pi}{4}\right]\)
f'(x) = 2 - 2sin(2x) = 0 => sin(2x) = 1 => \(x=\dfrac{\pi}{4}\in\left[\dfrac{\pi}{12};\dfrac{\pi}{4}\right]\text{}\)
ta có: \(f\left(\dfrac{\pi}{12}\right)=\dfrac{\pi}{6}+\dfrac{\sqrt{3}}{2}< f\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{2}\)
vậy \(\max\limits_{x\in\left[\dfrac{\pi}{12};\dfrac{\pi}{4}\right]}y=f\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{2}\)
=> C
\(y'=x^2+2mx+2m-1\)
Hàm có cực trị khi \(\Delta'>0\)
\(\Rightarrow m^2-2m+1>0\)
\(\Rightarrow m\ne1\)
\(y=\dfrac{-x^2+mx-2}{x+1}\)
\(y'=\dfrac{\left(-2x+m\right)\left(x+1\right)-\left(-x^2+mx-2\right)}{\left(x+1\right)^2}=\dfrac{-x^2-2x+m+2}{\left(x+1\right)^2}\)
Hàm nghịch biến trên các khoảng xác định khi:
\(-x^2-2x+m+2\le0;\forall m\)
\(\Leftrightarrow\Delta'=1+\left(m+2\right)\le0\)
\(\Rightarrow m\le-3\)
\(y=\dfrac{2x+1}{x+3}\Rightarrow y'=\dfrac{5}{\left(x+3\right)^2}>0;\forall x\in TXĐ\)
\(y=-x^4+2x^2+1\Rightarrow y'=-4x^3+4x=0\Rightarrow x=\left\{-1;0;1\right\}\) có cực trị nên có các khoảng ĐB, NB (có thể nhớ nhanh là hàm bậc 4 ko bao giờ ĐB hoặc nghịch biến trên R)
\(y=3x^3+x-3\Rightarrow y'=9x^2+1>0;\forall x\)
Vậy (I) và (III) đồng biến trên các khoảng xác định
A đúng