Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1 : 3x – y – 5 = 0, d2 :x-4=0. Viết phương trình đường tròn có bán kính R =5, tâm thuộc đường thẳng d1 với tung độ âm và cắt đường thẳng d2 theo dây cung có độ dài bằng 8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng a: 3x - 4y - 31 = 0
Gọi I ( x; y ) là tâm của đương tròn cần tìm
Ta có: d( I; a ) = IA = 5 =>\(\frac{\left|3x-4y-31\right|}{\sqrt{3^2+4^2}}=5\) <=> \(\left|3x-4y-31\right|=25\)<=> 3x - 4y - 31 = 25 ( 1) hoặc 3x - 4y - 31 = -25 ( 2)
a có VTPT \(\overrightarrow{n}\) = ( 3; -4) => a có VTCP \(\overrightarrow{u}\) = ( 4; 3 )
Lại có: IA vuông góc với a => ( 1- x ) . 4 + 3 ( - 7 - y ) = 0 <=> - 4x -3 y = 17 (3)
Từ (1) ; (3) => \(I_1\left(4;-11\right)\)
Từ (2) ; (3) => \(I_2\left(-2;-3\right)\)
Đáp án A
Có 2 nghiệm phân biệt cùng dấu dương
\(\hept{\begin{cases}\Delta>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-2m^2+11m-5>0\\\frac{3\left(m-2\right)}{m-1}>0\end{cases}}}\)
ĐK
\(\hept{\begin{cases}\frac{1}{2}< m< 5\\m< 1haym>2\end{cases}\Leftrightarrow\frac{1}{2}< m< 1\left(hay\right)2< m< 5}\)
\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)
=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)
\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)
X2- mx+1 <0
\(\Delta\)= (-m)2 -4.1.1
\(\Delta\)= m -4
để BPT trên có nghiệm khi \(\Delta\)<0
Tức là: m-4<0
m<4
Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x
Cho \(\Delta ABC\)có AB = 8, BC = 17 , AC = 15. Số đo góc A = ?
Theo định lí Pytago, nếu AB2 + AC2 = BC2 thì tam giác đó là tam giác vuông
Thay AB = 8, BC = 17, AC = 15 ta có
AB2 + AC2 = 82 + 152 = 289
BC2 = 172 = 289
=> 82 + 152 = 172
=> AB2 + AC2 = BC2 ( Đ/lí Pytago )
=> \(\Delta ABC\)là tam giác vuông tại A
=> \(\widehat{A}=90^0\)
Tam giác ABC có :
8²+15²=289; 17²=289
=>AB² +AC²=BC²=>tam giác ABC vuông tại A
(đ/l pytago đảo)
=>Â =90°
trả lời
; doggggggggggggggggggg
Gọi I là tâm của đường tròn cần tìm
Vì I thuộc d1 : 3x - y - 5 = 0 và có tung độ âm => I ( x; 3x - 5 ) với 3x - 5 < 0
Gọi A; B là giao điểm của d2 : x - 4 = 0 với đường tròn
=> AB = 8
Gọi M là trung điểm của AB => AM = 8: 2 = 4
=> d( I ; d2 ) = IM = \(\sqrt{AI^2-AM^2}=\sqrt{5^2-4^2}=3\)
khi đó ta có: \(\frac{\left|x-4\right|}{1}=3\)
<=> \(\orbr{\begin{cases}x-4=3\\x-4=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Với x = 7 => I ( 7; 16 ) loại vì 16 > 0
Với x = 1 => I ( 1; -2)
Phương trình đường tròn cần tìm là: ( x - 1 )^2 + ( y + 2 ) ^2 = 25