\(\left(3x-3\right)^2+\left(4y+2\right)^2\)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=10\cdot\dfrac{4}{7}-1,38-7,62\\ =10\cdot\dfrac{4}{7}-\left(1,38+7,62\right)\\ =\dfrac{10\cdot4}{7}-9\\ =\dfrac{40}{7}-\dfrac{63}{7}\\ =\dfrac{40-63}{7}\\ =\dfrac{-23}{7}\)
Hai góc phụ nhau nên \(\widehat{M}+\widehat{N}=90^0\)
mà \(\widehat{M}-\widehat{N}=20^0\)
nên \(\widehat{M}=\dfrac{90^0+20^0}{2}=55^0;\widehat{N}=55^0-20^0=35^0\)
15x⁴ + 7x⁴ + (−20x²)²
= 22x⁴ + 400x⁴
= 422x⁴
Tại x = -1, ta có:
422x⁴ = 422.(−1)⁴ 422
\(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3x-2\right)=5\)
=>\(6x^2+2x-3x-1+9x^2-6x+12x-8=5\)
=>\(15x^2+5x-9-5=0\)
=>\(15x^2+5x-14=0\)
\(\Delta=5^2-4\cdot15\cdot\left(-14\right)=25+60\cdot14=25+840=865>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{-5-\sqrt{865}}{2\cdot15}=\dfrac{-5-\sqrt{865}}{30}\\x=\dfrac{-5+\sqrt{865}}{30}\end{matrix}\right.\)
a; - \(\dfrac{3}{5}\) + \(\dfrac{7}{5}\) = \(\dfrac{-3+7}{5}\) = \(\dfrac{4}{5}\)
b; \(\dfrac{3}{5}\) - \(\dfrac{-9}{5}\) = \(\dfrac{3-\left(-9\right)}{5}\) = \(\dfrac{3+9}{5}\) = \(\dfrac{12}{5}\)
c; \(\dfrac{23}{-11}\) - \(\dfrac{-3}{11}\) = \(\dfrac{-23}{11}\) + \(\dfrac{3}{11}\) = \(\dfrac{-20}{11}\)
d; -2\(\dfrac{1}{3}\) - 1\(\dfrac{3}{4}\)
= \(\dfrac{-7}{3}\) - \(\dfrac{7}{4}\)
= \(\dfrac{-28}{12}\) - \(\dfrac{21}{12}\)
= \(\dfrac{-49}{12}\)
e; (- \(\dfrac{1}{3}\))(-\(\dfrac{9}{13}\))
= \(\dfrac{3}{13}\)
f; 1\(\dfrac{1}{2}\) x (- \(\dfrac{10}{9}\))
= \(\dfrac{3}{2}\) x (- \(\dfrac{10}{9}\))
= - \(\dfrac{5}{3}\)
\(\dfrac{1}{2}\)\(x^2\) = \(\dfrac{1}{4}x^2\) + \(\dfrac{1}{4}\)\(x^2\)
a: 2x-3=x+1/2
=>\(2x-x=3+\dfrac{1}{2}\)
=>\(x=\dfrac{7}{2}\)
b: \(4x-\left(2x+1\right)=3-\dfrac{1}{3}+x\)
=>\(4x-2x-1=x+\dfrac{8}{3}\)
=>\(2x-1=x+\dfrac{8}{3}\)
=>\(2x-x=\dfrac{8}{3}+1\)
=>\(x=\dfrac{11}{3}\)
\(\dfrac{15}{23}-\dfrac{21}{23}-\left(-\dfrac{8}{23}\right)-\left(-\dfrac{21}{33}\right)\)
\(=\left(\dfrac{15}{23}+\dfrac{8}{23}-\dfrac{21}{23}\right)+\dfrac{21}{33}\)
\(=\dfrac{2}{23}+\dfrac{21}{33}=\dfrac{2\cdot33+21\cdot23}{23\cdot33}=\dfrac{549}{759}\)
Sửa đề:
\(\dfrac{15}{23}-\dfrac{21}{23}-\left(-\dfrac{8}{23}\right)-\left(-\dfrac{21}{23}\right)\\ =\dfrac{15}{23}-\dfrac{21}{23}+\dfrac{8}{23}+\dfrac{21}{23}\\ =\left(\dfrac{15}{23}+\dfrac{8}{23}\right)+\left(-\dfrac{21}{23}+\dfrac{21}{23}\right)\\ =1+0\\ =1\)
Ta có: \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left(y-2\right)^{2028}\ge0\end{matrix}\right.\)
=> \(\left|x+1\right|+\left(y-2\right)^{2028}\ge0\)
Dấu = xảy ra khi:
\(\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Khi đó:
`A =` \(x^{2024}+\left(5-y\right)^3\)
`=` \(\left(-1\right)^{2024}\) `+ (5-2)^3 `
`= 1 + 3^3 `
`=1 + 27`
`= 28`
Vậy `A = 28`
\(\left(3x-3\right)^2+\left(4y+2\right)^2=0\)
Ta có:
`(3x-3)^2>=0` với mọi x
`(4y+2)^2>=0` với mọi x
`=>(3x-3)^2+(4y+2)^2>=0` với mọi x,y
Mặt khác: `(3x-3)^2+(4y+2)^2=0`
Dấu "=" xảy ra: `3x-3=0` và `4y+2=0`
`=>3x=3` và `4y=-2`
`=>x=3/3=1` và `y=-2/4=-1/2`