Cho tam giác ABC nội tiếp (O), ngoại tiếp (I). BE, CF là các đường phân giác. Gọi N, P lần lượt là trung điểm của AC, AB. EF cắt NP tại Q. CMR \(AQ\perp OI\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-
- 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i ≠ 0 với mọi i sao cho 1 ≤ i ≤ 6.
- Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i ≠ 0.
- Giả sử với mọi i sao cho 1 ≤ i ≤ k (với k ≥ 5), đều có a_i ≠ 0. Ta sẽ chứng minh rằng a_(k+1) ≠ 0.
Nếu a_k ≠ 0, a_(k+1) ≠ 0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.
Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1) ≠ 0.
Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.
- 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
- Với a, b, c bất kỳ, ta có ∣a−b∣, ∣b−c∣, ∣c−a∣ ≥ 0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
- Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.
Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.
Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.
Nếu b và c đều khác 0, ta có:
∣b−c∣, ∣c−a∣, ∣a−b∣ ≥ 1
Do đó, trong 3 số ∣b−c∣, ∣c−a∣, ∣a−b∣, không có số nào bằng 0. Khi đó, ta có:
∣∣b−(b−c)∣−∣c−a∣∣=∣a−b∣
Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có
10:06
Để tìm giao của hai tập hợp A và B, ta cần xác định phần nằm trong cả hai tập hợp. Ta có:
A = (-2;7]
B = [0;5]
Phần nằm trong cả hai tập hợp là đoạn [-2;5], vì nó nằm trong A và cũng nằm trong B.
Vậy, ta có:
A ∩ B = [-2;5]
CAB là bù của A ∩ B trong tập hợp A hoặc B. Vì vậy, ta có:
CAB = (-∞;-2) U (5;7]
Vậy đáp án là D.CAB=(-2;0)U(5;7].
Để tìm giao của hai tập hợp A và B, ta cần xác định phần nằm trong cả hai tập hợp. Ta có:
A = (-2;7]
B = [0;5]
Phần nằm trong cả hai tập hợp là đoạn [-2;5], vì nó nằm trong A và cũng nằm trong B.
Vậy, ta có:
A ∩ B = [-2;5]
CAB là bù của A ∩ B trong tập hợp A hoặc B. Vì vậy, ta có:
CAB = (-∞;-2) U (5;7]
Vậy đáp án là D.CAB=(-2;0)U(5;7].
Lời giải:
a. Để ĐTHS đi qua gốc tọa độ (đi qua điểm $O(0,0)$) thì:
$0=-2.0+k(0+1)$
$\Leftrightarrow k=0$
b. Để ĐTHS đi qua điểm $M(-2,3)$ thì:
$3=-2(-2)+k(-2+1)$
$\Leftrightarrow 3=4-k$
$\Leftrightarrow k=1$
c. Viết lại $y=-2x+kx+k=x(k-2)+k$
Để ĐTHS song song với $y=\sqrt{2}x$ thì:
$k-2=\sqrt{2}$
$\Leftrightarrow x=2+\sqrt{2}$
Cách 1: Quãng đường mà hình tròn A lăn được bằng quãng đường di chuyển của tâm hình tròn A. Tâm I của hình tròn A cách tâm hình tròn B một khoảng bằng 4 lần bán kính của hình tròn A (tương ứng, chu vi của đường tròn mà I vạch nên cũng gấp 4 lần chu vi hình A). Vì vậy, hình A phải thực hiện 4 vòng quay mới trở lại điểm xuất phát.
Cách 2: Dễ thấy chu vi hình B gấp 3 lần chu vi hình A. Chia đường tròn lớn thành 3 phần bằng nhau bởi 3 điểm M, N, P (hình vẽ), mỗi phần như vậy có độ dài bằng chu vi hình A. Khi hình A lăn từ M đến N theo chiều kim đồng hồ, bán kính nối tâm hình tròn A với điểm tiếp xúc giữa 2 hình tròn (bán kính màu đen) quét một góc 3600+1200. Tương tự cho 2 phần còn lại, để hình A trở về điểm xuất phát thì bán kính màu đen quét 1 góc tổng cộng là: 3 x ( 3600 + 1200 ) = 4 x 3600, tức 4 vòng quay.
Mình quên không nói là đề bài yêu cầu chứng minh 2 bổ đề trên.
Gọi M là trung điểm của BC. Ta có:
Từ đó, ta có tỷ số đồng dạng:
EB/EC = BF/BC
EC/EB = CF/BC
Kết hợp hai tỷ số trên, ta có:
(BF/BC) * (EC/EB) = 1
Áp dụng định lí Menelaus cho tam giác EFN và đường NP, ta có:
(AF/FN) * (NP/PE) * (EQ/QF) = 1
Vì N là trung điểm của AC, nên AF = FN. Khi đó, ta có:
(NP/PE) * (EQ/QF) = 1
Từ đó, ta suy ra:
NP/PE = QF/EQ
Do đó, tam giác NPE đồng dạng với tam giác QFE (theo tỷ số cạnh bên).
Vì tam giác NPE đồng dạng với tam giác QFE, nên ∠NEP = ∠QEF.
Ta có:
∠NEP + ∠PEO + ∠QEF + ∠FEO = 180° (tổng các góc trong tam giác)
∠NEP + ∠PEO + ∠NEP + ∠FEO = 180° (vì ∠NEP = ∠QEF)
2∠NEP + ∠PEO + ∠FEO = 180°
Vì ∠PEO + ∠FEO = ∠POE = 90° (do OI là đường tiếp tuyến của (O)), nên ta có:
2∠NEP + 90° = 180°
2∠NEP = 90°
∠NEP = 45°
Vậy, ta có ∠NEP = 45°. Từ đó, suy ra ∠NEP = ∠QEA = 45°.
Vì ∠QEA = 45°, nên AQ ⊥ OI.
Vậy, ta đã chứng minh được AQ ⊥ OI.
9:47