Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(m=1\) BPT trở thành \(1\le0\) (vô nghiệm) thỏa mãn
- Với \(m\ne1\) BPT đã cho vô nghiệm khi \(\left(m-1\right)x^2+2\left(m-1\right)x+1>0\) nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2-\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\1< m< 2\end{matrix}\right.\) \(\Rightarrow1< m< 2\)
Kết hợp lại ta được: \(1\le m< 2\)
- Với �=1m=1 BPT trở thành 1≤01≤0 (vô nghiệm) thỏa mãn
- Với �≠1m=1 BPT đã cho vô nghiệm khi (�−1)�2+2(�−1)�+1>0(m−1)x2+2(m−1)x+1>0 nghiệm đúng với mọi x
⇔{�−1>0Δ′=(�−1)2−(�−1)<0⇔{m−1>0Δ′=(m−1)2−(m−1)<0
⇔{�>11<�<2⇔{m>11<m<2 ⇒1<�<2⇒1<m<2
Kết hợp lại ta được: 1≤�<21≤m<2
Gọi G là trọng tâm tam giác ABC. Ta có:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)
Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)
Gọi I là tâm tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)
Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\) (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))
Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)
Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG.
Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).
M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)
Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
2.
\(x^2+4x-5\ge0\Leftrightarrow\left(x-1\right)\left(x+5\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-5\end{matrix}\right.\)
3.
a. Phương trình tham số của đường thẳng qua M và có vtcp \(\overrightarrow{u}=\left(4;-2\right)\) có dạng:
\(\left\{{}\begin{matrix}x=-1+4t\\y=1-2t\end{matrix}\right.\)
b.
Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\dfrac{\left|3.\left(-1\right)-4.1-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
c.
Đường thẳng \(\Delta\) nhận \(\left(3;-4\right)\) là 1 vtpt nên đường thẳng vuông góc \(\Delta\) nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình đường thẳng qua M và vuông góc \(\Delta\) là:
\(4\left(x+1\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y+1=0\)
4.
Gọi \(C\left(x;y\right)\) , do C thuộc d nên: \(x-2y+8=0\Rightarrow x=2y-8\)
\(\Rightarrow C\left(2y-8;y\right)\)
Mà C có hoành độ dương \(\Rightarrow2y-8>0\Rightarrow y>4\)
\(\overrightarrow{AB}=\left(3;-1\right)\) \(\Rightarrow AB=\sqrt{10}\)
Đường thẳng AB nhận (1;3) là 1 vtpt và đi qua A nên có pt:
\(1\left(x-2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-8=0\)
Áp dụng công thức khoảng cách:
\(d\left(C;AB\right)=\dfrac{\left|2y-8+3y-8\right|}{\sqrt{1^2+3^2}}=\dfrac{\left|5y-16\right|}{\sqrt{10}}\)
Ta có:
\(S_{ABC}=\dfrac{1}{2}d\left(C;AB\right).AB=\dfrac{1}{2}.\dfrac{\left|5y-16\right|}{\sqrt{10}}.\sqrt{10}=\dfrac{\left|5y-16\right|}{2}\)
\(\Rightarrow\dfrac{\left|5y-16\right|}{2}=17\Rightarrow\left|5y-16\right|=34\)
\(\Rightarrow\left[{}\begin{matrix}5y-16=34\\5y-16=-34\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=10\\y=-\dfrac{18}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow C\left(12;10\right)\)