Tìm ba số tự nhiên liên tiếp biết rằng nếu cộng ba tích, mỗi tích là tích của hai trong ba số đó thì được 26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔPMN có AB//MN
nên \(\dfrac{AB}{MN}=\dfrac{PA}{PM}\)
=>\(\dfrac{AB}{MN}=\dfrac{3}{7}\)
mà MN-AB=8
nên \(MN=8:\left(7-3\right)\cdot7=8:4\cdot7=14\left(cm\right)\)
=>AB=14-8=6(cm)
2:
a: Xét ΔABD có AE là phân giác
nên \(\dfrac{BE}{ED}=\dfrac{BA}{AD}\)
Xét ΔBAC có BF là phân giác
nên \(\dfrac{FA}{FC}=\dfrac{BA}{BC}=\dfrac{BA}{AD}\)
=>\(\dfrac{BE}{ED}=\dfrac{FA}{FC}\)
b:
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
\(\dfrac{BE}{ED}=\dfrac{FA}{FC}\)
=>\(\dfrac{BE}{ED}+1=\dfrac{FA}{FC}+1\)
=>\(\dfrac{BD}{ED}=\dfrac{AC}{FC}\)
mà BD=2OD và AC=2OC
nên \(\dfrac{2OD}{ED}=\dfrac{2OC}{FC}\)
=>\(\dfrac{OD}{ED}=\dfrac{OC}{FC}\)
Xét ΔODC có \(\dfrac{OD}{ED}=\dfrac{OC}{FC}\)
nên EF//CD
a: Đặt (d): y=ax+b
Theo đồ thị, ta sẽ thấy: (d) đi qua A(6;0) và B(9;120)
Thay x=6 và y=0 vào y=ax+b, ta được:
\(a\cdot6+b=0\)
=>6a+b=0(1)
Thay x=9 và y=120 vào y=ax+b, ta được:
\(a\cdot9+b=120\)
=>9a+b=120(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}9a+b=120\\6a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9a+b-6a-b=120\\6a+b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a=120\\b=-6a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=40\\b=-240\end{matrix}\right.\)
b: a=40; b=-240
=>y=40x-240
Thay x=8 vào y=40x-240, ta được:
\(y=40\cdot8-240=80\left(km\right)\)
=>Ô tô còn cách B 120-80=40km
a: Vì đường thẳng y=ax+b song song với đường thẳng y=3x-7 nên \(\left\{{}\begin{matrix}a=3\\b\ne-7\end{matrix}\right.\)
=>y=3x+b
Thay x=1 và y=2 vào y=3x+b, ta được:
\(b+3\cdot1=2\)
=>b+3=2
=>b=-1
Vậy: y=3x-1
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-7=-3x+3\\y=2x-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\cdot2-7=-3\end{matrix}\right.\)
Thay x=2 và y=-3 vào y=ax+b, ta được:
\(a\cdot2+b=-3\)
=>2a+b=-3(1)
Thay x=-2 và y=5 vào y=ax+b, ta được:
\(a\cdot\left(-2\right)+b=5\)
=>-2a+b=5(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=-3\\-2a+b=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+b-2a+b=-3+5\\2a+b=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2b=2\\2a=-3-b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\2a=-3-1=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)
a:
b: Tọa độ giao điểm của d1 với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{4}x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\dfrac{x}{4}=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-12\\y=0\end{matrix}\right.\)
Vậy: (d1) giao Ox tại A(-12;0)
Tọa độ giao điểm của (d1) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{4}x+3=\dfrac{1}{4}\cdot0+3=3\end{matrix}\right.\)
vậy: (d1) giao Oy tại B(0;3)
a:
ĐKXĐ: \(x\ne0;y\ne0\)
\(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{\dfrac{1}{x}-\dfrac{1}{y}}=\dfrac{x+y}{xy}:\dfrac{x-y}{xy}=\dfrac{x+y}{xy}\cdot\dfrac{xy}{x-y}=\dfrac{x+y}{x-y}\)
b:
ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
\(\dfrac{\dfrac{x}{x+1}-\dfrac{x-1}{x}}{\dfrac{x}{x-1}-\dfrac{x+1}{x}}\)
\(=\left(\dfrac{x^2-\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right):\dfrac{x^2-\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}\)
\(=\dfrac{x^2-x^2+1}{x\cdot\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{x^2-x^2+1}\)
\(=\dfrac{x-1}{x+1}\)
c:
ĐKXĐ: \(x\ne-1\)
\(1-\dfrac{x}{1-\dfrac{x}{x+1}}\)
\(=1-\dfrac{x}{\dfrac{x+1-x}{x+1}}\)
\(=1-\dfrac{x}{\dfrac{1}{x+1}}\)
\(=1-x\left(x+1\right)=1-x^2-x\)
\(B=\dfrac{-\left(2x^2+3\right)+2x^2+x+5}{2x^2+3}=-1+\dfrac{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{39}{8}}{2x^2+3}>-1\)
\(B=\dfrac{2x^2+3-2x^2+x-1}{2x^2+3}=1-\dfrac{2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}}{2x^2+3}< 1\)
\(\Rightarrow-1< B< 1\)
Mà B nguyên \(\Rightarrow B=0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
Gọi ba số tự nhiên liên tiếp lần lượt là x;x+1;x+2
Cộng ba tích, mỗi tích của tích của hai trong ba số trên thì được 26 nên ta có:
\(x\left(x+1\right)+\left(x+1\right)\left(x+2\right)+x\left(x+2\right)=26\)
=>\(x^2+x+x^2+3x+2+x^2+2x=26\)
=>\(3x^2+6x+2-26=0\)
=>\(3x^2+6x-24=0\)
=>\(x^2+2x-8=0\)
=>(x+4)(x-2)=0
=>\(\left[{}\begin{matrix}x=-4\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: Ba số liên tiếp cần tìm là 2;3;4
Giải:
Ba số tự nhiên liên tiếp có dạng: n; n + 1; n + 2 (n \(\in\) N*)
Tích của số thứ nhất và số thứ hai là: n.(n + 1)
Tích của số thứ nhất và số thứ ba là: n.(n + 2)
Tích của số thứ hai và số thứ ba là: (n + 1).(n + 2)
Theo bài ra ta có:
n(n + 1) + n(n+2) + (n + 1)(n + 2) = 26
n2 + n + n2 + 2n + n2 + n + 2n + 2 = 26
3n2 + 6n + 2 - 26 = 0
3n2 + 6n - 24 = 0
3n2 - 12 + 6n - 12= 0
(3n2 - 12) + (6n - 12) = 0
3(n2 - 4) + 6(n - 2) = 0
3(n - 2)(n + 2) + 6(n - 2) = 0
(n - 2)(3n + 6 + 6) = 0
(n - 2)(3n + 12) = 0
\(\left[{}\begin{matrix}n-2=0\\3n+12=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}n=2\\n=-4\end{matrix}\right.\)
n = - \(4\) (loại)
Vậy n = 2, nên số thứ nhất là 2
Kết luận: Ba số tự nhiên liên tiếp đó là: 2; 3; 4