(x^2+1)^2-6.(x^2+1)^2+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^3-6x^2+12x-8=0$
$\Leftrightarrow (x-2)^3=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
\(x^3-6x^2+12x-8=0\)
`<=>x^3-3.x^3.2+3.x.2^2-2^3=0`
`<=>(x-2)^3=0`
`<=>x-2=0`
`<=>x=2`
\(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
`<=>x+3=0`
`<=>x=-3`
\(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.3.x^2+3.9x+3^3=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
`x-4` mũ `2=36`
TH1
`x-4=6`
`x=10`
TH2
`x-4=-6`
`x=-2`
Vậy `x=10` hoặc `x=-2`
(x - 4)2 - 36 = 0
(x - 4)2 = 0 + 36
(x - 4)2 = 36
(x - 4)2 = 62 = (-6)2
TH1 : (x - 4)2 = 62
x - 4 = 6
x = 6 + 4
x = 10
TH2 : (x - 4)2 = (-6)2
x - 4 = -6
x = -6 + 4
x = -2
vậy x ϵ {-2;10}
Lời giải:
a. $9x^2y-3x^2y^2=3x^2y(3-y)$
b. $5x(x-2)-7(x-2)=(x-2)(5x-7)$
c. $2y(x-1)+3x-3=3y(x-1)+3(x-1)=(x-1)(3y+3)=3(x-1)(y+1)$
d. $4x(x-2)+5(2-x)=4x(x-2)-5(x-2)=(x-2)(4x-5)$
e. $x^2-4+y(x-2)=(x-2)(x+2)+y(x-2)=(x-2)(x+2+y)$
Ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
P = \(\dfrac{a}{bc\left(a+c\right)}+\dfrac{b}{ac\left(a+b\right)}+\dfrac{c}{ab\left(b+c\right)}\)
\(=\dfrac{a^2}{abc\left(a+c\right)}+\dfrac{b^2}{abc\left(a+b\right)}+\dfrac{c^2}{abc\left(b+c\right)}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{abc\left(a+c\right)+abc\left(a+b\right)+abc\left(b+c\right)}\) (BĐT Cauchy - Schwarz)
\(=\dfrac{\left(a+b+c\right)^2}{2abc\left(a+b+c\right)}=\dfrac{a+b+c}{2abc}=\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\ge\dfrac{1}{2}.\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}\) (BĐT Cauchy - Schwarz)
\(=\dfrac{9}{2\left(ab+bc+ca\right)}\ge\dfrac{9}{\dfrac{2\left(a+b+c\right)^2}{3}}=\dfrac{27}{2\left(a+b+c\right)^2}\)
(x2+1)2-6(x2+1)2+5
= (x2+1)2(-6+1)+5
= -5(x2+1)2+5
= -5(x4+2x2+1-1)
= -5(x4+2x2)
= -5x4-10x2
\(\left(x^2+1\right)^2-6\left(x^2+1\right)^2+5\\ \Leftrightarrow\left(x^2+1\right)\left(-6+5\right)\\ \Leftrightarrow\left(x^2+1\right).-1\\ \Leftrightarrow-x^2-1\)