so sánh
13+132+133+...+1399A=13+132+133+...+1399+\(\dfrac{1}{3^{100}}\) với 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x + 3/4 = 1/2 : -5/4 - 1/2 x
2x + 1/2 x = -2/5 - 3/4
5/2 x = -23/20
x = -23/20 : 5/2 = -23/50
Vậy x = -23/50
19/57 . 2 4/7 - 19/57 . 1 5/7 - 19/57
= 19/57 x ( 2 4/7 - 1 5/7 )
= 19/57 x 6/7
= 2/7
\(\dfrac{19}{57}.2\dfrac{4}{7}-\dfrac{19}{57}.1\dfrac{5}{7}-\dfrac{19}{57}\)
\(\text{=}\dfrac{19}{57}.\left(2\dfrac{4}{7}-1\dfrac{5}{7}-1\right)\)
\(\text{=}\dfrac{19}{57}.\left(\dfrac{-1}{7}\right)\)
\(\text{=}\dfrac{-1}{21}\)
c) \(2021,2345.2020,1234+2021,2345.\left(-2020,1234\right)\)
\(\text{=}2021,2345.\left(2020,1234-2020,1234\right)\)
\(\text{=}2021,2345.0\)
\(\text{=}0\)
d)\(4,75+\left(\dfrac{-1}{2}\right)^3+0,5^2-3.\dfrac{-3}{8}\)
\(\text{=}4,75-\dfrac{1}{8}+\dfrac{1}{4}+\dfrac{9}{8}\)
\(\text{=}\left(4,75+0,25\right)+\left(\dfrac{9}{8}-\dfrac{1}{8}\right)\)
\(\text{=}1+1\)
\(\text{=}2\)
Mình nhầm ở chỗ phần d nha.
Kết quả cuối cùng phải là :
\(\left(4,75+0,25\right)+\left(\dfrac{9}{8}-\dfrac{1}{8}\right)\)
\(\text{=}5+1\)
\(\text{=}6\)
a) \(12,4\cdot6\dfrac{1}{4}+\left(-12,4\right)\cdot\left(-2,5\right)^2\)
\(=12,4\cdot\dfrac{25}{4}-12,4\cdot\dfrac{25}{4}=0\)
b) \(32,125-\left(6,325+12,125\right)-\left(37+13,675\right)=32,125-6,325-12,125-37-13,675\)
\(=\left(32,125-12,125\right)-\left(6,325+13,675\right)-37=20-20-37=-37\)
\(4^x.8^x=1024\)
\(\Rightarrow32^x=1024\)
\(\Rightarrow32^2=1024\)
\(\Rightarrow x=2\)
2\(^x\).2\(^{x+3}\) = 144
22\(x\) = 144: 23
4\(^x\) = 18
nếu \(x\) ≤ 2 ⇒ 4\(^x\) ≤ 42 = 16 < 18 (loại)
Nếu \(x\) ≥ 3 ⇒ 4\(^x\) ≥ 43 = 64 > 18 (loại)
Vậy \(x\) \(\in\) \(\varnothing\)
\(25^2\cdot2^4=5^{2^2}\cdot2^4=5^4\cdot2 ^4=10^4\)
\(3^8=\left(3^2\right)^4=9^4\)
\(10^4>9^4\Rightarrow25^2\cdot2^4>3^8\)
\(25^2\times2^4\) và \(3^8\)
Ta có:
\(25^2\times2^4=625\times16=10000\)
\(3^8=6561\)
Vì: 10000 > 6561
=> \(25^2\times2^4>3^8\)
\(\left(0,25\right)^8=\left[\left(0,5\right)^2\right]^8=\left(0,5\right)^{2.8}=\left(0,5\right)^{16}\)
\(\left(0,125\right)^4=\left[\left(0,5\right)^3\right]^4=\left(0,5\right)^{3.4}=\left(0,5\right)^{12}\)
\(\left(0,0635\right)^2=\left[\left(0,5\right)^3\right]^2=\left(0,5\right)^{3.2}=\left(0,5\right)^6\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\)
3A - A = 1 - \(\dfrac{1}{3^{100}}\)
2A = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\) < \(\dfrac{1}{2}\)