-5,2-(4,19-3,2)+(3,81+2,5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sự kiện "Gieo được mặt có ít nhất 1 chấm" là chắc chắn.
b) Đề thiếu.
c) Đề thiếu.
d) Sự kiện "Gieo được mặt có số chấm lớn hơn 7" là không thể vì chỉ có mặt có số 1 đến số 6
e) Sự kiện "Gieo được mặt có số chấm là một số lẻ" là có thể
f) Giống câu e
\(3x-x=20140+\left(-3\right)^2\\ \Rightarrow2x=20140+9\\ \Rightarrow2x=20149\\ \Rightarrow x=\dfrac{20149}{2}.\)
\(A=\dfrac{4}{7\cdot31}+\dfrac{6}{7\cdot41}+\dfrac{9}{10\cdot41}+\dfrac{7}{10\cdot57}\)
=>\(A=\dfrac{20}{31\cdot35}+\dfrac{30}{35\cdot41}+\dfrac{45}{41\cdot50}+\dfrac{35}{50\cdot57}\)
\(=5\left(\dfrac{4}{31\cdot35}+\dfrac{6}{35\cdot41}+\dfrac{9}{41\cdot50}+\dfrac{7}{50\cdot57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{35}+\dfrac{1}{35}-\dfrac{1}{41}+\dfrac{1}{41}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{57}\right)\)
\(=5\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
\(B=\dfrac{7}{19\cdot31}+\dfrac{5}{19\cdot43}+\dfrac{3}{23\cdot43}+\dfrac{11}{23\cdot57}\)
\(=\dfrac{14}{31\cdot38}+\dfrac{10}{38\cdot43}+\dfrac{6}{43\cdot46}+\dfrac{22}{46\cdot57}\)
\(=2\left(\dfrac{7}{31\cdot38}+\dfrac{5}{38\cdot43}+\dfrac{3}{43\cdot46}+\dfrac{11}{46\cdot57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{38}+\dfrac{1}{38}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{57}\right)\)
\(=2\left(\dfrac{1}{31}-\dfrac{1}{57}\right)\)
=>\(\dfrac{A}{B}=\dfrac{5}{2}\)
a: Số sách tham khảo môn Toán là:
\(1260\cdot\dfrac{2}{5}=504\left(quyển\right)\)
b: Số sách tham khảo môn Văn là:
\(504\cdot75\%=378\left(quyển\right)\)
Tổng số sách Khoa học và truyện tranh là:
1260-504-378=378(quyển)
c: Số quyển truyện tranh là:
\(378\cdot\dfrac{2}{3}=252\left(quyển\right)\)
Tỉ số phần trăm giữa số quyển truyện tranh và tổng số sách là:
\(\dfrac{252}{1260}=20\%\)
\(\dfrac{11}{19}.\dfrac{12}{29}-\dfrac{11}{19}.\dfrac{2}{29}+\dfrac{11}{19}.\dfrac{19}{29}\)
\(=\dfrac{11}{19}.\left(\dfrac{12}{29}-\dfrac{2}{29}+\dfrac{19}{29}\right)\)
\(=\dfrac{11}{19}.1\)
\(=\dfrac{11}{19}\)
Bài 1:
a; \(\dfrac{-24}{11}\) + \(\dfrac{-19}{13}\) - (\(\dfrac{-2}{11}\) + \(\dfrac{20}{13}\))
= - \(\dfrac{24}{11}\) - \(\dfrac{19}{13}\) + \(\dfrac{2}{11}\) - \(\dfrac{20}{13}\)
= - (\(\dfrac{24}{11}\) - \(\dfrac{2}{11}\)) - (\(\dfrac{19}{13}\) + \(\dfrac{20}{13}\))
= - \(\dfrac{22}{11}\) - \(\dfrac{39}{13}\)
= - 2 - 3
= - 5
Bài 6
a; A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\) + ... + \(\dfrac{1}{50^2}\)
\(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\) = \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)
.....................................
\(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{50^2}\) < \(\dfrac{1}{9}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{50}\) = \(\dfrac{4}{9}\) - \(\dfrac{1}{50}\) < \(\dfrac{4}{9}\) (1)
\(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)
\(\dfrac{1}{4^2}\) > \(\dfrac{1}{4.5}\) = \(\dfrac{1}{4}-\dfrac{1}{5}\)
....................................
\(\dfrac{1}{50^2}\) > \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{50^2}\) > \(\dfrac{1}{9}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{50}\) = \(\dfrac{1}{4}\) + (\(\dfrac{1}{9}\) - \(\dfrac{1}{50}\)) > \(\dfrac{1}{4}\) (2)
Kết hợp (1) và (2) ta có: \(\dfrac{1}{4}\) < A < \(\dfrac{4}{9}\) (đpcm)
=-5,2-0,99+6,31
=-6,19+6,31
=0,12
-5,2 - (4,19 - 3,2) + (3,81 + 2,5)
= -5,2 - 4,19 + 3,2 + 6,31
= (-5,2 + 3,2) - 4,19 + 6,31
= -2 + 2,12
= 0,12