đơn giản các biểu thức sau (x+y+z)^3-(x+x-z)^3-(y+z-x)^3-(z+x-y)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{\left(a+b+c\right)^2-2ab-2bc-2ac}+\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(1)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ab+ac+bc}+\frac{7}{ab+ac+bc}\)
\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)
\(=9+\frac{7}{ab+ac+bc}\)(2)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)
\(=3ab+3ac+3bc\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}>=ab+ac+bc\)
\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+21=30\)(4)
từ (1)(2)(3)(4)\(\Rightarrow M=\frac{1}{1-2\left(ab+ac+bc\right)}+\frac{1}{abc}>=30\)
dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
vậy min M là 30 khi \(a=b=c=\frac{1}{3}\)
A K I B C 1 2 1 2
a) Do BI là tia phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\)
CK là tia phân giác \(\widehat{ACB}\)\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{ACB}}{2}\)
Mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)
Xét \(\Delta ABI\)và \(\Delta ACK\)có :
\(AB=AC\)( \(\Delta ABC\)cân tại A )
\(\widehat{B_1}=\widehat{C_1}\) ( CM trên )
Chung \(\widehat{BAC}\)
\(\Rightarrow\Delta ABI=\Delta ACK\left(g-c-g\right)\)
\(\Rightarrow AK=AI\) \(\Rightarrow\Delta AKI\)cân tại A
\(\Rightarrow\widehat{AKI}=\widehat{AIK}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AKI}=\widehat{ABC}\)
Mà 2 góc đó ở vị trí đồng vị
\(\Rightarrow KI//BC\)(3)
Từ (1) và (3) \(\Rightarrow\)tứ giác BKIC là hình thang cân
b) Ta có \(KI//BC\Rightarrow\widehat{IKC}=\widehat{C_2}\)( so le trong )
Mà \(\widehat{C_2}=\widehat{C_1}\)
\(\Rightarrow\widehat{IKC}=\widehat{C_1}\)
\(\Rightarrow\Delta KIC\)cân tại I \(\Rightarrow IK=IC\)
x4+2008x2+2007x+2008
<=> x4-x+2008x2+2008x+2008
<=> x(x3-1)+2008(x2+x+1)
<=> x(x-1)(x2+x+1)+2008(x2+x+1)
<=> (x2+x+1)(x2-x+2008)
C1: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=-1\end{cases}}\)
C2 : \(2x^2+5x+3=0\)
\(\Leftrightarrow2\left(x^2+\frac{5}{2}x+\frac{25}{16}\right)-\frac{1}{8}=0\)
\(\Leftrightarrow2\left(x+\frac{5}{4}\right)^2=\frac{1}{8}\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{1}{16}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{4}=\frac{1}{4}\\x+\frac{5}{4}=-\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{3}{2}\end{cases}}\)
Vậy ...
C1 : \(x^2+6x-16=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(8x-16\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-8\\x=2\end{cases}}\)
C2 : \(x^2+6x-16=0\)
\(\Leftrightarrow\left(x^2+6x+9\right)-25=0\)
\(\Leftrightarrow\left(x+3\right)^2-5^2=0\)
\(\Leftrightarrow\left(x+3+5\right)\left(x+3-5\right)=0\)
\(\Leftrightarrow\left(x+8\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-8\\x=2\end{cases}}\)
Vậy ...
Gọi x(sản phẩm) là số sản phẩm tổ 1 phải làm theo kế hoạch
đk: 0<x<800,x∈Z+
800-x(sản phẩm) là số sản phẩm tổ 2 phải làm theo kế hoạch
0,1x(sản phẩm ) là số sản phẩm tổ 1 làm thêm được
0,2(800-x) (sản phẩm ) là số sản phẩm tổ 2 làm thêm được
Vì cả 2 tổ làm thêm được 910-800=110(sản phẩm) nên ta có phương trình:
0,1x+0,2(800−x)=1100,1x+0,2(800−x)=110
⇔0,1x−160−0,2x=110⇔0,1x−160−0,2x=110
⇔0,1x=50⇔0,1x=50
⇔x=500(tmđk)⇔x=500(tmđk)
Vậy theo kế hoạch, tổ 1 phải làm 500 sản phẩm
tổ 2 phải làm 800-500=300 sản phẩm
\(P=\frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}=\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}\)
vì a,b,c là 3 cạnh của 1 tam giác áp dụng bđt tam giác có:
\(\hept{\begin{cases}b+c>a\Rightarrow2b+2c>a\Rightarrow2ab+2ac>a^2\Rightarrow2ab+2ac-a^2>0\\c+a>b\Rightarrow2c+2a>b\Rightarrow2bc+2ab>b^2\Rightarrow2bc+2ab-b^2>0\\a+b>c\Rightarrow2a+2b>c\Rightarrow2ac+2bc>c^2\Rightarrow2ac+2bc-c^2>0\end{cases}}\)
\(\Rightarrow\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>0\)áp dụng bđt cauchy schawazt dạng enge ta có:
\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>=\)
\(\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2bc+2ab-b^2+2ac+2bc-c^2}=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(a^2+b^2+c^2\right)}\left(1\right)\)
vì \(a^2+b^2+c^2>=ab+ac+bc\Rightarrow4ab+4ac+4bc-\left(a^2+b^2+c^2\right)< =\)
\(4ab+4ac+4bc-\left(ab+ac+bc\right)\)mà \(\left(a+b+c\right)^2>0\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(a^2+b^2+c^2\right)}>=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(ab+ac+bc\right)}\)(2)
\(=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-ab-ac-bc}=\frac{\left(a+b+c\right)^2}{3ab+3ac+3bc}=\frac{a^2+b^2+c^2+2ab+2ac+2bc}{3ab+3ac+3bc}\)
\(>=\frac{ab+ac+bc+2ab+2ac+2bc}{3ab+3ac+3bc}=\frac{3ab+3ac+3bc}{3ab+3ac+3bc}=1\)(3)
từ (1)(2)(3)\(\Rightarrow\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>=1\)
\(\Rightarrow P=\frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}>=1\)
dấu = xảy ra khi a=b=c
vậy min P là 1 khi a=b=c