K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Vì \(2^x>0,x^2+1>0\) nên \(y^2-6y+8< 0\Leftrightarrow\left(y-3\right)^2< 1\)

\(\Leftrightarrow\left|y-3\right|< 1\)\(\Leftrightarrow2< y< 4\)\(\Rightarrow y=3\) thay vào \(2^x+\left(x^2+1\right)\left(y^2-6y+8\right)=0\) ta được:\(2^x=x^2+1\)

Xét x=1 thì 2=2 (thỏa mãn)

Xét x\(\ge\)2 thì \(2^x⋮4\) mà \(x^2+1\) chia 4 chỉ dư 1 và 2(vô lí)

Vậy x=1,y=3 thỏa mãn

31 tháng 3 2018
Bài này hay
31 tháng 3 2018

các hình thoi có cùng chu vi, hình vuông có diện tích lớn nhất.

tk nha bạn

31 tháng 3 2018

trung bình cộng của tất cả các số có 2 chữ số mà các chữ số đó phải chia hết cho 6

1 tháng 4 2018

1. áp dụng BĐT cô-si:

\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)

Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)

cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)

mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)

thay vào(1) => đpcm

1 tháng 4 2018

cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha

31 tháng 3 2018

đề bài là phân tích thành nhân tử nha

2 tháng 11 2018

delllll dyt

1 tháng 4 2018

gọi số đó là abcd (0<a\(\le9,0\le b,c,d\le9\))

theo bài ra ta có: \(\hept{\begin{cases}abcd=k^2\\\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)=h^2\end{cases}}\left(k,h\varepsilonℕ;31< k,h\le99\right)\)

\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000\left(a+1\right)+100\left(b+3\right)+10\left(c+5\right)+\left(d+3\right)=h^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1000a+100b+10c+d=k^2\\1000a+100b+10c+d+1353=h^2\end{cases}}\)

\(\Rightarrow h^2-k^2=1353\)

Ta thấy (h-k)>(h+k) \(\forall h,k\varepsilonℕ^∗\)

\(\Rightarrow\left(h-k\right)\left(h+k\right)=1\cdot1353=3\cdot451=11\cdot123=33\cdot41\)

Xét \(\hept{\begin{cases}h-k=1\\h+k=1353\end{cases}}\Leftrightarrow\hept{\begin{cases}h=677\\k=676\end{cases}\left(loai\right)}\)

xét \(\hept{\begin{cases}h-k=3\\h+k=451\end{cases}}\Leftrightarrow\hept{\begin{cases}h=227\\k=224\end{cases}}\left(loai\right)\)

Xét \(\hept{\begin{cases}h-k=11\\h+k=123\end{cases}}\Leftrightarrow\hept{\begin{cases}h=67\\k=56\end{cases}}\left(nhan\right)\)

Xét \(\hept{\begin{cases}h-k=33\\h+k=41\end{cases}}\Leftrightarrow\hept{\begin{cases}h=37\\k=4\end{cases}}\left(loai\right)\)

Vậy k=56=>abcd=\(k^2=3136\)