Viết số tự nhiên bé nhất có các chữ số khác nhau mà tích các chữ số bằng 48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Độ dài cạnh hình vuông là 192:4=48(m)
Diện tích thửa đất là 48x48=2304(m2)
Chiều cao thửa đất là 2304:72=32(m)
b:
Tổng độ dài hai đáy là 72x2=144(m)
Độ dài đáy lớn là:
(144+20):2=164:2=82(m)
Độ dài đáy bé là 82-20=62(m)
\(3\times\left(x+2\right)-2=16\)
=>\(3\times\left(x+2\right)=16+2=18\)
=>\(x+2=\dfrac{18}{3}=6\)
=>x=6-2=4
Cửa hàng giảm giá số tiền là:
\(20000-15000=5000\) (đồng)
Cửa hàng giảm giá số phần trăm là:
\(5000:20000=0,25=25\%\)
Đ/s: \(25\%\)
Số tiền mà của hàng giảm giá cho bìa sách là:
`20000 - 15000 = 5000` (đồng)
Của hàng đã giảm giá số `%` là:
`5000 : 20000` x `100 = 25%` (Giá vốn)
Đáp số: ...
a: ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
\(P=\left(\dfrac{2x}{x+3}+\dfrac{x}{x-3}+\dfrac{3x^2+3}{9-x^2}\right):\left(\dfrac{2x-2}{x-3}-1\right)\)
\(=\dfrac{2x\left(x-3\right)+x\left(x+3\right)-3x^2-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x-2-x+3}{x-3}\)
\(=\dfrac{2x^2-6x+x^2+3x-3x^2-3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{-3x-3}{x+1}\cdot\dfrac{1}{x+3}=-\dfrac{3}{x+3}\)
b: |x-2|=1
=>\(\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Khi x=1 thì \(P=\dfrac{3}{1+3}=\dfrac{3}{4}\)
c: Để P nguyên thì \(-3⋮x+3\)
=>\(x+3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{-2;-4;0;-6\right\}\)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
b: DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>F là trung điểm của AE
XétΔECA có F là trung điểm của EA
nên CF là đường trung tuyến của ΔECA
`a` là số tự nhiên không chia hết cho `3` nên a có dạng:
`a = 3k + 1` hoặc `a = 3k + 2`
(`k` thuộc `N`*)
Mà a là số tự nhiên lẻ `=> a^2` là số tự nhiên lẻ `=> a^2 - 1` là số chẵn
`=> a^2 ⋮ 2`
Để `a^2 - 1 ⋮ 6` thì `a^2 - 1 ⋮ 3` (Vì `UCLN(2;3) = 1`)
- Xét `a = 3k + 1`
`=> a^2 -1 = (3k+1)^2 -1= 9k^2 + 6k + 1 - 1= 9k^2 + 6k^2 ⋮ 3` (Thỏa mãn)
- Xét `a = 3k + 2`
`=> a^2 -1 = (3k+2)^2 -1 = 9k^2 + 12k + 4 - 1= 9k^2 + 12k^2 + 3 ⋮ 3` (Thỏa mãn)
Vậy ...
6x8=48
68