Khi chia số tự nhiên \(a\) cho \(24\), ta được số dư là \(10\). Hỏi \(a\) có chia hết cho \(2\) không? Có chia hết cho \(4\) không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.25x^2-9=0\\ \Leftrightarrow\left(5x\right)^2-3^2=0\\ \Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x=3\\5x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\\ b.\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\\ \Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x+17=16\\ \Leftrightarrow8x=-1\\ \Leftrightarrow x=-\dfrac{1}{8}\\ c.\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\\ \Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\\ \Leftrightarrow5x^2+2x+10-5x^2+245=0\\ \Leftrightarrow2x+265=0\\ \Leftrightarrow2x=-265\\ \Leftrightarrow x=-\dfrac{265}{2}\)
\(a.A=x^2+5x+7\\ =\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{3}{4}\\ =\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra: `x+5/2=0<=>x=-5/2`
\(b.B=6x-x^2-5\\ =-\left(x^2-6x+9\right)+4\\ =-\left(x-3\right)^2+4\le4\forall x\)
Dấu "=" xảy ra: `x-3=0<=>x=3`
Bài 4.2:
\(a.\left(\dfrac{1}{4}\right)^3\cdot\left(\dfrac{1}{8}\right)^2\\ =\left[\left(\dfrac{1}{2}\right)^2\right]^3\cdot\left[\left(\dfrac{1}{2}\right)^3\right]^2\\ =\left(\dfrac{1}{2}\right)^6\cdot\left(\dfrac{1}{2}\right)^6\\ =\left(\dfrac{1}{2}\right)^{12}\\ b.25\cdot5^3\cdot\dfrac{1}{625}\cdot5^3\\ =5^2\cdot5^3\cdot\dfrac{1}{5^4}\cdot5^3\\ =5^8\cdot\dfrac{1}{5^4}\\ =5^4\\ c.4^2\cdot32:2^3\\ =\left(2^2\right)^2\cdot2^5:2^3\\ =2^4\cdot2^5:2^3\\ =2^{4+5-3}\\ =2^6\\ d.5^6\cdot\dfrac{1}{20}\cdot2^2\cdot3^3:125\\ =\left(\dfrac{1}{20}\cdot2^2\cdot5\right)\cdot5^5\cdot3^3:5^3\\ =5^2\cdot3^3\)
bài 4.3:
a: \(\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)
b: \(\dfrac{9\cdot5^{20}\cdot27^9-3\cdot9^{15}\cdot25^9}{7\cdot3^{29}\cdot125^6-3\cdot3^9\cdot15^{19}}\)
\(=\dfrac{3^2\cdot5^{20}\cdot3^{27}-3\cdot3^{30}\cdot5^{18}}{7\cdot3^{29}\cdot5^{18}-3^{10}\cdot3^{19}\cdot5^{19}}\)
\(=\dfrac{3^{29}\cdot5^{18}\left(5^2-3^2\right)}{3^{29}\cdot5^{18}\left(7-5\right)}=\dfrac{16}{2}=8\)
AM=1/4MB
=>MB=4AM
AM+MB=AB
Do đó: 4AM+MA=8
=>5MA=8
=>\(MA=\dfrac{8}{5}=1,6\left(cm\right)\)
\(1\cdot2\cdot3\cdot4\cdot6⋮̸10\)
\(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7⋮10\)
Do đó: \(1\cdot2\cdot3\cdot4\cdot6+1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7⋮̸10\)
B = 1.2.3.4.6
B là tích của các số chwaxn mà trong đó không có nào có tận cùng bằng 0 nên B không chia hết cho 10
A = 1.2.3.4.5.6.7
A = (2.5). 1.3.4.6.7 = 10.1.3.4.6.7 ⋮ 10
Vậy B + A không chia hết cho 10
\(x^2+7x+6\\ =\left(x^2+6x\right)+\left(x+6\right)\\ =x\left(x+6\right)+\left(x+6\right)\\ =\left(x+6\right)\left(x+1\right)\)
\(x^2\) + 7\(x\) + 6
= \(x^2\) + \(x\) + 6\(x\) + 6
= (\(x^2\) + \(x\)) + (6\(x\) + 6)
= \(x\)(\(x+1\)) + 6.(\(x\) + 1)
= (\(x\) + 1)(\(x\) + 6)
\(x^3+x-2\)
\(=x^3-x^2+x^2-x+2x-2\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+2\left(x-1\right)=\left(x-1\right)\left(x^2+x+2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{15^2-9^2}=12\)
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{AH}{AB}=\dfrac{CA}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot9}{15}=\dfrac{108}{15}=7,2\)
b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)
Do đó: ΔBAD~ΔBHI
c: Sửa đề: ΔAID cân
ΔBAD~ΔBHI
=>\(\widehat{BDA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
nên \(\widehat{AID}=\widehat{ADI}\)
=>ΔADI cân tại A
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE
Xét ΔBAE có
BD,AH là các đường cao
BD cắt AH tại I
Do đó: I là trực tâm của ΔBAE
=>EI\(\perp\)AB
=>EI//AC
`x^3 + 2x^2 + x + 2 = 0`
`=> (x^3 + 2x^2) + (x + 2) = 0`
`=> x^2 (x+2) + (x+2) = 0`
`=> (x^2 + 1)(x+2) = 0`
Mà `x^2 + 1 > 0`
`=> x+ 2 = 0`
`=> x = -2`
Vậy `x = - 2`
Có a, b ϵ N
Ta có:
a : 24 = b (dư 10)
a = b x 24 + 10
Do cả 24 và 10 đều chia hết cho 2 ⇒ a ⋮ 2
Nhưng chỉ có 24 ⋮ 4 còn 10 thì không nên ⇒ a \(⋮̸\)4