cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. chứng minh rằng A=an+bn+cn+dn là một hợp số với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc = 100a + 10b + c = 98a + 2a + 7b + 2b + b + 2c - c = (98a + 7b) + (2a + 2b + 2c) + (b - c) = 7(14a + b) + 2(a + b + c) + (b - c) chia hết cho 7.
Mà 7(14a + b) chia hết cho 7 và 2(a + b + c) chia hết cho 7
\(\Rightarrow\)b - c chia hết cho 7
Mà 0\(\le\)b - c < 7
Vậy b - c = 0
Q=\(1+\frac{1}{\frac{3\times2}{2}}+\frac{1}{\frac{4\times3}{2}}+...+\frac{1}{\frac{21\times20}{2}}\)
Q = \(1+\frac{2}{3\times2}+\frac{2}{4\times3}+...+\frac{2}{21\times20}\)
Q : 2 = \(\frac{1}{2}+\frac{1}{3\times2}+\frac{1}{4\times3}+...+\frac{1}{21\times20}\)
Q : 2 =\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
Q : 2 =\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
Q : 2 =\(1-\frac{1}{21}\)
Q : 2 = \(\frac{20}{21}\)
Do đó Q = \(\frac{20}{21}\times2=\frac{40}{21}\)
Vậy Q = \(\frac{40}{21}\)
k mình nha
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
Quy đồng mẫu trong tổng A:
Có 25 là luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49
Gọi a2; a3;...;a50 là các thừa số phụ tương ứng của 1/2; 1/3; ...; 1/50.
\(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}\)
Nhận xét a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ
mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A ko là số tự nhiên
Quy đồng mẫu trong tổng A:
Có 25 là luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49
Gọi a2; a3;...;a50 là các thừa số phụ tương ứng của 1/2; 1/3; ...; 1/50.
$A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}$A=a2+a3+a4+...+a5025.3.5.7...49
Nhận xét a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ
mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A không là số tự nhiên
10n + 18n - 1= (10n - 1)+ 27n - 18n = 999...99 - 9. 2n + 27n (có n chữ số 9)
= 9. 111...11 - 9. 2n + 27n ( có n chữ số 1)
= 9.(111...1 - 2.n) + 27n
nhận xét: 111...11 - 2.n = 111...1 - n - n = 111...11 - (1+ 1+ ...+ 1) - (1+ 1+ ... + 1)
n chữ số 1 n chữ số 1 n chữ số 1
= 999...99 (có n chữ số 9) => 111...11 - 2.n chia hết cho 9
=> 9. (111...1 - 2n) chia hết cho 27
mà 27.n chia hết cho 27
Nên số đã cho chia hết cho 27 (ĐPCM)
Ta có : 10^n + 18n - 1 = 10^n - 1 - 9n + 27n
= 999....99 (nchu so 9) - 9n + 27n
=9 . (111......111 - n ) + 27n
Vì n và so co tong cac chu so bang n khi chia cho 9 deu co cung so du nen hieu cua chung chia het cho 9
Suy ra 111....111 (n chu so 1 ) - n chia het cho 9
Suy ra ( 111....111 - n ) . 9 chia het cho 9 vi 9 chia het cho 3
Mà 27n chia het cho 27 nen suy ra 10^n + 18n - 1 chia het cho 27
ta có: \(\frac{2a+1}{2a^2+2a}=\frac{2a+1}{2a\left(a+1\right)}\)
nhận xét: 2a và 2a +1 là 2 số nguyên liên tiếp nên 2a và 2a + 1 không có ước chung nào khác 1; -1 (*)
gọi d = ƯCLN(2a+1; a+1)
=> 2a+1 chia hết cho d và
a+ 1 chia hết cho d
=> 2a+ 1 - 2(a+1) = -1 chia hết cho d => d = 1 hoặc -1 => 2a+ 1 và a+ 1 nguyên tố cùng nhau hay chúng ko có ước chung nào khác 1; -1 (**)
Từ (*)(**) => 2a + 1 và 2a.(a+ 1) nguyên tố cùng nhau => phân số đã cho là tối giản
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không có số x
Lớp 6 khó vậy sao?
ab=cd (*)
a=b=c=d=1 => A=4=2.2 đúng
a=[c,d]
b=[c,d]
a,b,c,d, vai trò như nhau
g/s a=c; b=d
A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số
với a,b,c,d >1, và a,b,c,d khác nhau
ta có
đảm bảo (*)
( không tồn tại ab=cd khác nhau mà nguyên tố)
g/s a và c có ước lớn nhất p
ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)
từ ab=cd=> x.p.b=y.p.d
từ (**)=> b=y.q và d=x.q
thay hết vào A
A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)
A=B.C --> dpcm
ko hiểu