K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2015

Quy đồng mẫu trong tổng A: 

Có 25 là  luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49

Gọi  a2; a3;...;a50 là các thừa số phụ  tương ứng của 1/2; 1/3; ...; 1/50. 

 \(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}\)

Nhận xét  a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ

mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A ko là số tự nhiên

2 tháng 4 2015

Quy đồng mẫu trong tổng A: 

Có 25 là  luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49

Gọi  a2; a3;...;a50 là các thừa số phụ  tương ứng của 1/2; 1/3; ...; 1/50. 

 $A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}$A=a2+a3+a4+...+a5025.3.5.7...49 

Nhận xét  a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ

mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A không là số tự nhiên

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

20 tháng 5 2016

Xét 1/2 + 1/3 + 1/4 
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3) 
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1) 
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13 
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9) 
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9 
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2) 
Tg tự, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3) 
(1),(2),(3) ---> A> 3 (*) 
Mặt khác 
1/2 + 1/3 + 1/6 = 1 (4) 
1/4 + 1/5 + 1/20 = 1/2 (5) 
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6) 
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7) 
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8) 
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9) 
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10) 
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**) 
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên. 

7 tháng 3 2021

ko bít

7 tháng 3 2021

CHỊU THÔI KO BÍT :-D

19 tháng 3 2017

cần ko tôi giúp cho

19 tháng 3 2017

50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)

50A= 1201

A=1201:50

A=\(\frac{1201}{10}\)=120.1

mà 120,1 ko phải số tự nhiên mà là số thập phân

=>A ko là số tự nhiên

5 tháng 8 2017

vì 1/2+1/3+1/4+1/5+1/6+.....+1/11=2,0198765(3)>2 => A>2

5 tháng 7 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{45^2}< \frac{1}{44.45}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{44.45}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{44}-\frac{1}{45}\)

                                                                              \(=1-\frac{1}{45}< 1\) (1)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;\frac{1}{4^2}>0;...;\frac{1}{45^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}>0\)(2)

Từ (1);(2) \(\Rightarrow0< M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< 1\)

=> M không phải là số tự nhiên ( đ p c m)

25 tháng 1 2017

chịu lun

mk chỉ biết tính tổng ra 

rồi chứng tỏ thôi

chúc bn học giỏi!

thanks@