cho tam giác ABC , AK vuông góc với BC,D là trung điểm BC.Lấy E,N đối xứng với A qua K,D.Kẻ NM vuông góc với BC.
a, CM AMNK là hình bình hành
b,CM KENM là hình chữ nhật
c,CM BCNE là hình thang cân
d,CM tam giác DEN cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\9-x^2\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
b) \(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)
\(A=\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{4}{x-3}\)
c) Thay `x=-1` vào A ta có:
\(A=\dfrac{4}{-1-3}=\dfrac{4}{-4}=-1\)
d) `A=-4` khi: \(\dfrac{4}{x-3}=-4\)
\(\Leftrightarrow x-3=-1\)
\(\Leftrightarrow x=2\left(tm\right)\)
Bài 1:
a: ĐKXĐ: x<>3
\(\dfrac{9}{x-3}+\dfrac{3x}{3-x}\)
\(=\dfrac{9}{x-3}-\dfrac{3x}{x-3}=\dfrac{9-3x}{x-3}\)
\(=\dfrac{-3\left(x-3\right)}{x-3}=-3\)
b: \(\dfrac{5}{x+5}+\dfrac{-4}{x+4}\)
\(=\dfrac{5\left(x+4\right)-4\left(x+5\right)}{\left(x+5\right)\left(x+4\right)}\)
\(=\dfrac{5x+20-4x-20}{\left(x+5\right)\left(x+4\right)}=\dfrac{x}{\left(x+5\right)\left(x+4\right)}\)
c: \(\dfrac{x+5}{2x-3}-\dfrac{2x-7}{3-2x}-\dfrac{x+4}{3-2x}\)
\(=\dfrac{x+5}{2x-3}+\dfrac{2x-7}{2x-3}+\dfrac{x+4}{2x-3}\)
\(=\dfrac{x+5+2x-7+x+4}{2x-3}\)
\(=\dfrac{4x+2}{2x-3}\)
d: \(\dfrac{x^2-y^2}{10x^3y}:\dfrac{x-y}{5xy}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)}{10x^3y}\cdot\dfrac{5xy}{x-y}\)
\(=\dfrac{x+y}{1}\cdot\dfrac{5xy}{10x^3y}\)
\(=\dfrac{x+y}{2x^2}\)
e: \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^3}\)
\(=\dfrac{2\left(x^2-10x+25\right)}{3\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{4\left(x-5\right)^3}\)
\(=\dfrac{2\left(x-5\right)^2}{4\left(x-5\right)^3}\cdot\dfrac{x-1}{3}\)
\(=\dfrac{x-1}{3\cdot2\left(x-5\right)}=\dfrac{x-1}{6x-30}\)
f: \(\dfrac{x-2}{x+1}:\dfrac{x^2-5x+6}{x^2-2x-3}\)
\(=\dfrac{x-2}{x+1}:\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x-2}{x+1}\cdot\dfrac{\left(x+1\right)}{x-2}=1\)
g: \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)
\(=\dfrac{x}{x-2y}+\dfrac{x}{x+2y}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)
h: \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\cdot\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
i: \(\left(\dfrac{2}{x+2}+\dfrac{2}{x-1}\right)\cdot\dfrac{x^2-4}{4x^2-1}\)
\(=\dfrac{2\left(x-1\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=\dfrac{2\left(2x+1\right)}{x-1}\cdot\dfrac{x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{2\left(x+1\right)}{\left(2x-1\right)\left(x-1\right)}\)
j: \(1+\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{1-x}-\dfrac{1}{1-x^2}\right)\)
\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{-1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x-1+1}{\left(x-1\right)\left(x+1\right)}\)
\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x}{\left(x-1\right)\left(x+1\right)}\)
\(=1-\dfrac{x^2}{x^2+1}=\dfrac{1}{x^2+1}\)
Bài 5:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
=>\(\dfrac{AC}{HA}=\dfrac{BC}{BA}\)
=>\(AC\cdot AB=AH\cdot BC\)
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=7,5^2-4,5^2=36=6^2\)
=>AC=6(cm)
=>\(AH=\dfrac{4.5\cdot6}{7,5}=\dfrac{27}{7,5}=3,6\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(HB^2=4,5^2-3,6^2=2,7^2\)
=>HB=2,7(cm)
HB+HC=BC
=>HC+2,7=7,5
=>HC=4,8(cm)
c: Xét ΔBAH có BK là phân giác
nên \(\dfrac{KH}{KA}=\dfrac{BH}{BA}\left(1\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)
Ta có: ΔBAH~ΔBCA
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{AD}{DC}=\dfrac{HK}{KA}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: Xét ΔHDA vuông tại H và ΔADB vuông tại A có
\(\widehat{HDA}\) chung
Do đó: ΔHDA~ΔADB
=>\(\dfrac{DH}{DA}=\dfrac{DA}{DB}\)
=>\(DA^2=DH\cdot DB\)
c: Ta có: ΔADB vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=3^2+4^2=25=5^2\)
=>BD=5(cm)
=>\(DH=\dfrac{DA^2}{DB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
ΔDHA vuông tại H
=>\(HD^2+HA^2=DA^2\)
=>\(HA^2+1,8^2=3^2\)
=>\(HA^2=2,4^2\)
=>HA=2,4(cm)
Bài 4:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(1)
=>\(BA^2=BH\cdot BC\)
c: Xét ΔBAH có BI là phân giác
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\left(2\right)\)
Xét ΔBCA có BD là phân giác
nên \(\dfrac{DC}{DA}=\dfrac{BC}{BA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{IA}{IH}=\dfrac{DC}{DA}\)
=>\(\dfrac{IH}{IA}=\dfrac{DA}{DC}\)
c: Xét ΔBAC vuông tại A có \(BA^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(AD=3\left(cm\right)\)
ΔBAD vuông tại A
=>\(S_{BAD}=\dfrac{1}{2}\cdot BA\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9\left(cm^2\right)\)
ΔBAC vuông tại A
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
\(S_{BAD}+S_{BDC}=S_{BAC}\)
=>\(S_{BDC}=24-9=15\left(cm^2\right)\)
B=2006^2024
B= ....6
=> B chia 5 dư 1
Có 2006 đồng dư với -1 (mod 223)
=> 2006^2024 đồng dư với (-1)^2024 = 1 (mod 223)
=> B chia 223 dư 1
Lời giải:
ĐKXĐ: $x\neq \pm \frac{2}{3}$
Gọi biểu thức trên là $A$
\(A=\frac{3x+2}{(3x-2)(3x+2)}-\frac{3x-2}{(3x+2)(3x-2)}+\frac{3x-6}{9x^2-4}\\ =\frac{3x+2}{(3x-2)(3x+2)}-\frac{3x-2}{(3x+2)(3x-2)}+\frac{3x-6}{(3x-2)(3x+2)}\\ =\frac{3x+2-(3x-2)+(3x-6)}{(3x-2)(3x+2)}=\frac{3x-2}{(3x-2)(3x+2)}=\frac{1}{3x+2}\)
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Ta có \(2006^{2024}=\left(7.286+4\right)^{2024}\) \(=7A+4^{2024}\). Do đó ta chỉ cần tìm số dư của \(4^{2024}\) khi chia cho 7.
Để ý rằng: \(4^0\equiv1\left[7\right]\); \(4^1\equiv4\left[7\right]\); \(4^2\equiv2\left[7\right]\); \(4^3\equiv1\left[7\right]\); \(4^4\equiv4\left[7\right]\); \(4^5\equiv2\left[7\right]\)
Do đó ta nảy sinh dự đoán rằng \(4^{3k+2}\equiv2\left[7\right]\left(k\inℕ\right)\). Ta sẽ chứng minh điều này bằng phương pháp quy nạp,
Thật vậy, với \(k=0\) thì khẳng định đúng (theo như trên)
Giả sử khẳng định đúng đến \(k=l\ge0\), khi đó \(4^{3l+2}\equiv2\left[7\right]\). Ta cần chứng minh khẳng định đúng với \(k=l+1\), tức là cm \(4^{3\left(l+1\right)+2}\equiv2\left[7\right]\)
Thật vậy, ta có \(4^{3\left(l+1\right)+2}\equiv4^{3l+3+2}\equiv64.4^{3l+2}\equiv1.2\equiv2\left[7\right]\)
Vậy khẳng định đúng với \(k=l+1\Rightarrow4^{3k+2}\equiv2\left[7\right]\)
Vì vậy \(4^{2024}=4^{2022+2}=4^{3.674+2}\equiv2\left[7\right]\)
Vậy số dư của phép chia \(2006^{2024}\) cho 7 là 2.
a: Xét ΔNHE vuông tại E và ΔNMH vuông tại H có
\(\widehat{HNE}\) chung
Do đó: ΔNHE~ΔNMH
=>\(\dfrac{NH}{NM}=\dfrac{NE}{NH}\)
=>\(NH^2=NE\cdot NM\left(1\right)\)
Xét ΔHFN vuông tại F và ΔPHN vuông tại H có
\(\widehat{HNF}\) chung
Do đó: ΔHFN~ΔPHN
=>\(\dfrac{NH}{NP}=\dfrac{NF}{NH}\)
=>\(NH^2=NP\cdot NF\left(2\right)\)
Từ (1),(2) suy ra \(NE\cdot NM=NP\cdot NF\)
b: Ta có: \(NE\cdot NM=NP\cdot NF\)
=>\(\dfrac{NE}{NP}=\dfrac{NF}{NM}\)
Xét ΔNEF và ΔNPM có
\(\dfrac{NE}{NP}=\dfrac{NF}{NM}\)
\(\widehat{ENF}\) chung
Do đó: ΔNEF~ΔNPM
=>\(\widehat{NEF}=\widehat{NPM}\)
c: ta có: \(\widehat{NEF}=\widehat{NPM}\)
mà \(\widehat{NEF}=\widehat{KEM}\)(hai góc đối đỉnh)
nên \(\widehat{KEM}=\widehat{KPN}\)
Xét ΔKEM và ΔKPF có
\(\widehat{KEM}=\widehat{KPF}\)
\(\widehat{EKM}\) chung
Do đó: ΔKEM~ΔKPF
=>\(\dfrac{KE}{KP}=\dfrac{KM}{KF}\)
=>\(KE\cdot KF=KM\cdot KP\)
a: ta có: AK\(\perp\)BC
NM\(\perp\)BC
Do đó: AK//NM
Xét ΔDKA vuông tại K và ΔDMN vuông tại M có
DA=DN
\(\widehat{DÁK}=\widehat{DNM}\)(hai góc so le trong, AK//MN)
Do đó: ΔDKA=ΔDMN
=>DK=DM và AK=MN
Xét tứ giác AKNM có
AK//MN
AK=MN
Do đó: AKNM là hình bình hành
b: Xét ΔAEN có
K,D lần lượt là trung điểm của AE,AN
=>KD là đường trung bình của ΔAEN
=>KD//EN
=>EN//BC
Ta có: AK//MN
mà E\(\in\)AK
nên AE//MN
Xét tứ giác KENM có
KE//NM
KM//EN
Do đó: KENM là hình bình hành
Hình bình hành KENM có \(\widehat{MKE}=90^0\)
nên KENM là hình chữ nhật
c: Xét tứ giác ABNC có
D là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>BN=AC
Xét ΔCAE có
CK là đường cao
CK là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
mà CA=BN
nên CE=BN
Xét tứ giác BCNE có NE//BC
nên BCNE là hình thang
Hình thang BCNE có BN=CE
nên BCNE là hình thang cân
d: Ta có: ΔAEN vuông tại E
mà ED là đường trung tuyến
nên DE=DN
=>ΔDEN cân tại D