Cho A=\(\frac{\left(2^4+\frac{4}{2^4}\right)\left(4^4+\frac{4}{2^4}\right)\left(6^4+\frac{4}{2^4}\right)...\left(32^4+\frac{^4}{2^4}\right)}{\left(1^4+\frac{4}{2^4}\right)\left(3^4+\frac{4}{2^4}\right)\left(5^4+\frac{4}{2^4}\right)...\left(31^4+\frac{4}{2^4}\right)}\) và B =2010. So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Kẽ AG, DH lần lược vuông góc với BC tại G,H. BI, EJ lần lược vuông góc với AC tại I,J. CK, FL lần lược vuông góc với AB tại K,L
Tính \(S_{BCD}\)
Ta có: AG // DH
\(\Rightarrow\frac{DH}{AG}=\frac{BD}{BA}=\frac{1}{2}\)
\(\Rightarrow\frac{S_{BCD}}{S_{ABC}}=\frac{\frac{1}{2}.DH.BC}{\frac{1}{2}.AG.BC}=\frac{1}{2}\)
\(\Rightarrow S_{BCD}=\frac{S_{ABC}}{2}=\frac{126}{2}=63\)
Tính \(S_{CAE}\)
Ta có: EJ // BI
\(\Rightarrow\frac{EJ}{BI}=\frac{EC}{CB}=\frac{1}{3}\)
\(\Rightarrow\frac{S_{CAE}}{S_{ABC}}=\frac{\frac{1}{2}.EJ.AC}{\frac{1}{2}.BI.AC}=\frac{1}{3}\)
\(\Rightarrow S_{CAE}=\frac{S_{ABC}}{3}=\frac{126}{3}=42\)
Tính \(S_{ABF}\)
Ta có: FL // CK
\(\Rightarrow\frac{FL}{CK}=\frac{AF}{AC}=\frac{1}{4}\)
\(\Rightarrow\frac{S_{ABF}}{S_{ABC}}=\frac{\frac{1}{2}.FL.AB}{\frac{1}{2}.CK.AB}=\frac{1}{4}\)
\(\Rightarrow S_{ABF}=\frac{S_{ABC}}{4}=\frac{126}{4}=31,5\)
b/ Kẽ AQ, ER lần lượt vuông góc với DC tại Q,R
Ta có: \(S_{ACD}=S_{ABC}-S_{BCD}=126-63=63=S_{BCD}\)
\(\Rightarrow\frac{S_{ACD}}{S_{ECD}}=\frac{S_{BCD}}{S_{ECD}}=\frac{\frac{1}{2}.h_B.DC}{\frac{1}{2}.h_E.DC}=3\)
Xét \(\Delta ENP\approx\Delta AMP\)(\(\approx\)là đồng dạng)
\(\Rightarrow\frac{EP}{AP}=\frac{ER}{AQ}=\frac{S_{ECD}}{S_{ACD}}=\frac{1}{3}\)
\(\Rightarrow AP=3PE\)
Tương tự ta có:
\(\frac{BM}{MF}=?\)
\(\frac{CN}{ND}=??\)
c/ Ta có:
\(\frac{S_{CPE}}{S_{CAE}}=\frac{\frac{1}{2}.h_P.EC}{\frac{1}{2}.h_A.EC}=\frac{EP}{EA}=\frac{1}{4}\)
\(\Rightarrow S_{CPE}=\frac{S_{CAE}}{4}=\frac{42}{4}=10,5\)
Tương tự \(\Rightarrow S_{BND}\)và \(S_{AMF}\)
\(S_{MNP}=S_{BDC}+S_{CAE}+S_{ABF}-S_{BND}-S_{CPE}-S_{AMF}\)
Phải đề thế này không
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2+1}\)
b/ Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\Rightarrow a=\frac{\left(x+1\right)^2}{x^2+1}\ge0}\)với mọi x
Ta thấy rằng a, b, c không thể đồng thời = 0 được vì như vậy sẽ làm cho mẫu không xác định
Nếu như 2 trong 3 số đó = 0 số còn lại khác 0 thì
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\ne0\)
Nếu a, b, c > 0 thì
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}>0\)
Nếu a, b, c < 0 thì
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}< 0\)
Vậy từ đây ta có để cho: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
thì trong số a, b, c phải có ít nhất 1 số âm và 1 số dương
Ta có: \(y=\frac{x}{\left(x+2004\right)^2}\)
\(\Rightarrow\frac{1}{y}=\frac{\left(x+2004\right)^2}{x}=\frac{x^2+4008x+2004^2}{x}=x+4008+\frac{2004^2}{x}\)
Để y lớn nhất thì \(\frac{1}{y}\)phải bé nhất
\(\frac{1}{y}=x+4008+\frac{2004^2}{x}\ge4008+2.2004=8016\)
Vậy GTNN của \(\frac{1}{y}\)là 8016 tại x = 2004
Vậy GTLN của \(y=\frac{1}{8016}\)tại x = 2004
a/ a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)
=> ĐPCM
b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc
<=> a2 + b2 + c2 + 2( - ab + ac - bc)\(\ge\) 0
<=> (a - b + c)2 \(\ge0\)(đúng)
=> ĐPCM
mình cũng chưa biết câu trả lời , khi nào có ai trả lời gửi qua cho mình với nhé ! ok
mk ko biết mk mới học lớp nhỏ thôi . Đó là lớp này nè bn...... tự vào trang của mk coi đi nhé
hello