K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2024

 

 Giả sử tồn tại một số tự nhiên \(a\) để với mọi số tự nhiên \(b\)\(ab+4\) không phải là số chính phương. Điều này có nghĩa là phương trình \(ab+4=k^2\left(k\inℕ,k\ge2\right)\) không có nghiệm tự nhiên \(\left(b,k\right)\).

 \(\Leftrightarrow b=\dfrac{k^2-4}{a}\) không có nghiêm tự nhiên. 

 Điều này tương đương với việc không tồn tại số tự nhiên \(k\) nào để \(k^2-4⋮a\).     (*)

 Ta sẽ chứng minh (*) vô lý.

 Thật vậy, nếu \(a\ge4\) thì tồn tại số tự nhiên \(k=am+2\left(m\inℕ\right)\) thỏa mãn:

\(k^2-4=\left(am+2\right)^2-4=a^2m^2+4am+4-4=a\left(am^2+4m\right)⋮a\)

 Nếu \(a=3\) thì tồn tại số \(k=3n+1\left(n\inℕ\right)\) để:

 \(k^2-4=\left(3n+1\right)^2-4=9n^2+6n+1-4=9n^2+6n-3⋮3\)

 Nếu \(a=2\) thì chỉ cần chọn \(k\) chẵn là xong.

 Như vậy ta đã chỉ ra rằng (*) vô lý. Do đó điều ta giả sử ban đầu là sai.

 Vậy ta có đpcm.

25 tháng 6 2024

Tam giác ACE đều \(\Rightarrow AE=AC\) và \(\widehat{CAE}=60^o\)

Tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\) và \(\widehat{BAC}=90^o\)

Từ đó \(\Rightarrow AE=AB\) \(\Rightarrow\Delta ABE\) cân tại A

Đồng thời \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)

 \(\Rightarrow\widehat{ABE}=\dfrac{180^o-\widehat{BAE}}{2}=\dfrac{180^o-150^o}{2}=15^o\)

Mặt khác, tam giác ADB cân tại và \(\widehat{ADB}=150^o\) nên tam giác ADB chí có thể cân tại D (vì nếu cân tại điểm khác thì khi đó trong tam giác ADB sẽ có 2 góc bằng \(150^o\), vô lý). Khi đó \(\widehat{ABD}=15^o\)

 Trên cùng 1 nửa mặt phẳng bờ là đường thẳng chứa tia BA, có \(\widehat{ABD}=\widehat{ABE}=15^o\) nên B, D, E thẳng hàng. (đpcm)

 

 

25 tháng 6 2024

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{1}{6}\\ \Rightarrow xy=6\left(x+y\right)\\ \Rightarrow xy-6x-6y=0\\ \Rightarrow x\left(y-6\right)-6\left(y-6\right)-36=0\\ \Rightarrow\left(y-6\right)\left(x-6\right)=36\)

Ta có bảng: 

y-6361-1-36218-2-18312-3-1249-9-46-6     
x-6136-36-1182-18-2123-12-394-4-96-6     
y4275-308244-129183-61015-32120     
x742-305248-124189-6315102-3120     

Mà x,y nguyên dương nên (bạn tự chọn lại nhé) 

`1/x + 1/y = 1/6`

`<=> (x+y)/(xy) = 1/6`

`<=> xy = 6x + 6y`

`<=> xy - 6x - 6y = 0`

`<=> x(y-6) - 6(y-6) = 36`

`<=> (x-6)(y-6) = 36`

Do `x-6, y-6 in ZZ` nên `(x-6) in Ư(36)`.

Đến đây bạn tự chia trường hợp và làm nhé.

2

Bài 7:

p là số nguyên tố lớn hơn 3

=>p=3k+1 hoặc p=3k+2

Nếu p=3k+1 thì \(8p+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)⋮3\)

=>Loại

=>p=3k+2

\(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)

=>4p+1 là hợp số

Bài 6:

a: TH1: p=3

p+2=3+2=5; p+4=3+4=7

=>Nhận

TH2: p=3k+1

p+2=3k+1+2=3k+3=3(k+1)

=>Loại

TH3: p=3k+2

p+4=3k+2+4=3k+6=3(k+2)

=>Loại

b: TH1: p=5

p+2=5+2=7; p+6=5+6=11; p+18=5+18=23; p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24=5k+1+24=5k+25=5(k+5)

=>Loại

TH3: p=5k+2

p+18=5k+2+18=5k+20=5(k+4)

=>Loại

TH4: p=5k+3

p+2=5k+3+2=5k+5=5(k+1)

=>Loại

TH5: p=5k+4

p+6=5k+4+6=5k+10=5(k+2)

=>Loại

Vậy: p=5

25 tháng 6 2024

Bài 5:

Với p=2 => 7p+5=7*2 + 5 = 19 (tm) 

Với p>3 

TH1: p=3k+1 

=> 7(3k+1)+5=21k+7+5=21k+12=3(7k+4) ⋮ 3 

=> 7p+5 là hợp số

TH2: p=3k+2

=>7(3k+2)+5=21k+14+5=21k+19

Vì p là số nguyên tố lớn hơn 3 => p lẻ => 3k + 2 lẻ => 3k lẻ => k lẻ 

k lẻ => 21k lẻ => 21k + 19 chẵn => 21k+19 ⋮ 2

=> 7p+5 là hơn số 

Vậy có p=2 là thỏa mãn 

b: (2x+1):2=12:3

=>(2x+1):2=4

=>2x+1=2*4=8

=>2x=7

=>\(x=\dfrac{7}{2}\)

d: \(\dfrac{2x-14}{3}=\dfrac{12}{9}\)

=>\(\dfrac{2x-14}{3}=\dfrac{4}{3}\)

=>2x-14=4

=>2x=18

=>x=9

24 tháng 6 2024

Câu 11: 

\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\\ =\dfrac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\dfrac{1}{\left|x-2017\right|+2019}\\ =1-\dfrac{1}{\left|x-2017\right|+2019}\)

Ta có: \(\left|x-2017\right|\ge0\forall x\Rightarrow\left|x-2017\right|+2019\ge2019\forall x\)

\(\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\forall x\)

\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2018}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

Dấu "=" xảy ra khi: \(x-2017=0\Rightarrow x=2017\)

vậy: ... 

1: Sửa đề: \(f\left(x\right)=3x\left(1-3x+2x^3\right)-2x^2\left(-4+3x^2-x\right)\)

\(=3x-9x^2+6x^4+8x^2-6x^4+2x^3\)

\(=2x^3-x^2+3x\)

 

\(g\left(x\right)=-4\left(x^4+x^2+1\right)+x^3\left(4x+2\right)+4\)

\(=-4x^4-4x^2-4+4x^3+2x^3+4\)

\(=2x^3-4x^2\)

Bậc là 3

Hệ số cao nhất là 2

Hệ số tự do là 0

2: f(x)=g(x)+h(x)

=>h(x)=f(x)-g(x)

\(=2x^3-x^2+3x-2x^3+4x^2=3x^2+3x\)

3: Đặt h(x)=0

=>3x(x+1)=0

=>x(x+1)=0

=>\(\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

23 tháng 6 2024

1. `G(x)=-4(x^4+x^2+1)+x^3(4x+2)+4`

`=-4x^4-4x^2-4+4x^4+2x^3+4`

`=(4x^4-4x^4)+2x^3-4x^2+(4-4)`

`=2x^3-4x^2`

Bậc 3

Hệ số cao nhất: 2

Hệ số tự đó: 0

2. `F(x) = G(x) + H(x)`

`=>H(x)=F(x) - G(x)`

`=>H(x)=[3x(1-3x+2x^3)-2x^2(-4+3x^2-x)]-(2x^3-4x^2)

`=>H(x)=3x-9x^2+6x^4+8x^2-6x^4+2x^3-2x^3+4x^2`

`=>H(x)=3x^2+3x`

3. `H(x)=3x^2+3x=0`

`=>3x(x+1)=0`

TH1: `x=0`

TH2: `x+1=0=>x=-1`

22 tháng 6 2024