r
B=cănx-1/3- căn x - 9 căn x+5/(cănx+1)(cănx -3) - cănx/căn x+1
Rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2022^0+\left[100-\left(3^2+1\right)^2\right]\)
\(=1+100-10^2\)
=1
\(\left|x-y+1\right|>=0\forall x,y\)
=>\(-2\left|x-y+1\right|< =0\forall x,y\)
\(\left|y-2\right|>=0\forall y\)
=>\(-3\left|y-2\right|< =0\forall y\)
Do đó: \(-2\left|x-y+1\right|-3\left|y-2\right|< =0\forall x,y\)
=>\(C=-2\left|x-y+1\right|-3\left|y-2\right|-4< =-4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
Sao mình không nhìn thấy đề bài bạn nhỉ?
Thay a=1/3;b=3/5 vào A, ta được:
\(A=3\cdot\dfrac{1}{3}-\dfrac{1}{3}\cdot\dfrac{3}{5}+\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot\dfrac{3}{5}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{10}=\dfrac{4}{5}+\dfrac{1}{10}=\dfrac{9}{10}\)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
Tổng các số là:
\(\dfrac{6}{3}.111.\left(6+5+3\right)=3108\)
Gọi 2 số nguyên tô đó lần lượt là `a;b`
Ta có: Tích `2` số nguyên tố là `ab`
Do `a vdots a; b vdots b => ab vdots a` và `b`
Mà `ab vdots 1` và `ab`
`=> ab` có nhiều hơn `2` ước (đpcm)
Do tổng của hai số nguyên tố là 601 nên trong hai số có một số chẵn và một số lẻ
Số nguyên tố chẵn là 2
Số nguyên tố còn lại là:
601 - 2 = 599
a: Vì \(\widehat{yCB}=\widehat{yDA}\left(=76^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BC//AD
b: z là ở đâu bạn ơi?
`N = x^2 +3|y-2| -1`
Ta có: `{(x^2 >= 0 ),(|y-2| >=0):}`
`=> {(x^2 >= 0 ),(3|y-2| >=0):}`
`=> x^2 +3|y-2| >= 0`
`=> x^2 +3|y-2| -1 >=- 1`
Hay `N >= -1`
Dấu = xảy ra khi:
`{(x^2 = 0 ),(|y-2| =0):}`
`<=> {(x = 0 ),(y-2 =0):}`
`<=> {(x = 0 ),(y=2):}`
Vậy `N_(min) = -1 <=> {(x = 0 ),(y=2):}`
-------------------------------------------------
`K = ( x+2)^2+( y-1/5)^2 -8`
Ta có: `{(( x+2)^2 >=0),(( y-1/5)^2 >=0):}`
`=> ( x+2)^2+( y-1/5)^2 >= 0`
`=> ( x+2)^2+( y-1/5)^2 -8 >=- 8`
Hay `K >= -8`
Dấu = xảy ra khi:
`{(( x+2)^2 =0),(( y-1/5)^2 =0):}`
`<=> {( x+2 =0),( y-1/5 =0):}`
`<=> {( x=-2),( y=1/5):}`
Vậy `K_(min) = -8 <=> {( x=-2),( y=1/5):}`
\(B=\dfrac{\sqrt{x}-1}{3-\sqrt{x}}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1-\sqrt{x}}{\sqrt{x}-3}-\dfrac{9\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-9\sqrt{x}-5-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1-x-9\sqrt{x}-5-x+3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2x-6\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{-2\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-2\left(\sqrt{x}+2\right)}{\sqrt{x}-3}\)