Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
ĐK : a >= 0 , a khác 1
\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)
a: \(=\dfrac{2x+1-x-\sqrt{x}-1}{x\sqrt{x}-1}=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c: \(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{x-1}=\dfrac{-x+\sqrt{x}+2}{x-1}\)
\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x-1}=\dfrac{-\sqrt{x}+2}{\sqrt{x}-1}\)
1. \(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-3\right)^2}\\ =3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}\\ =2\sqrt{6}-3+3+\sqrt{6}=3\sqrt{6}\)
1.\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}+\sqrt{21-12\sqrt{3}}}=\sqrt{12-6\sqrt{3}+\sqrt{\left(3-2\sqrt{3}\right)^2}}\)
\(=\sqrt{12-6\sqrt{3}+2\sqrt{3}-3}=\sqrt{9-4\sqrt{3}}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3+3-\sqrt{6}=\sqrt{6}\)
Xét biểu thức phụ : \(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng : \(\frac{1}{2.\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+\frac{1}{5\sqrt{4}+4\sqrt{5}}+...+\frac{1}{2012\sqrt{2011}+2011\sqrt{2012}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)
\(P=\frac{3x+3\sqrt{x}-3-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{x+\sqrt{x}-2}\)
\(P=\frac{3x+3\sqrt{x}-3-x+1-x+4}{x+\sqrt{x}-2}\)
\(P=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\)
\(=\sqrt{2+2\sqrt{2}+1}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}\right)^2-1^2}}\)
\(=\sqrt{2}+1-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{2-1}}\)
\(=\sqrt{2}+1-\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{1}}\)
\(=\sqrt{2}+1-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}+1-\sqrt{2}+1=2\)