K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2024

Kí hiệu ϵ trong toán học là kí hiệu thuộc, dùng để biểu thị số thuộc 1 tập hợp.

24 tháng 7 2024

Kí hiệu "∈" là "thuộc"  

Kí hiệu "\(\infty\)" là vô hạn 

a) 3 số tự nhiên liên tiếp đó có dạng: n; n + 1; n + 2

Ta có: \(n+\left(n+1\right)+\left(n+2\right)=3n+3=3\left(n+1\right)\) ⋮ 3

b) 4 số tự nhiên liên tiếp đó có dạng: n; n + 1; n + 2; n + 3

Ta có: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6\)

Mà: 4n chia hết cho 4 mà 6 không chia hết cho 4 

=> tổng 4 số tự nhiên k chia hết cho 4 

a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn  mà số chẵn thì chia hết cho 2 

mk chỉ biết vậy thôi

3 tháng 10 2016

Bài 1:

a)Gọi 3 số đó là a;a+1;a+2

Ta có:

a+a+1+a+2=(a+a+a)+(1+2)

=3a+3=3(a+1) chia hết 3

Vậy ta có tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3

b)Gọi 4 số đó là a;a+1;a+2;a+3

Ta có:

a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)

=4a+6

Ta thấy: 4a chia hết 4, mà 6 không chia hết 4 

Vậy ta có tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

14 tháng 10 2017

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2

b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3

c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 

      3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3

\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)

d) Tương tự

14 tháng 10 2017

tk mk nhá

22 tháng 7 2016

cho sửa câu d nhé số tự nhiên liên tiếp là một số ko chia hết cho 4

3 tháng 12 2016

A, CÓ

B,KHÔNG

C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,

(a+a+a)+ (1+2)

3a+3 chia hết cho 3 

vi 3chia hết cho 3

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

 gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3

(a+a+a+a)+(1+2+3)

4a+6 không chia hết cho 3 vì 4 không chia hết cho 3

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3

26 tháng 12 2016

nếu câu a và câu b có vì sao thì sẽ làm thế nào