Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. A có 1 tập hợp con, gồm tập hợp con B
b.C={ 2; 3; 4; 5 } Có 2 tập hợp C như vậy, gồm C={2; 3; 4; 5} và C={1; 3; 4; 5}
ủng hộ mình nha!
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
1.A có 8 phần tử đó là các phần tử 0;1;2;3;4;5;6;7, 3 số \(\notin\)A là -1;-2;-3
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) C={2;4}
b)A\(\subset\)B vì A={1;3;5} B={0;1;2;3;4;5;}
c)E={0;1;2;3;4;5}
Tập hợp E có ít nhất 1 phần tử, nhiều nhất 6 phần tử
231(2):
$A=1+3+3^2+3^3+...+3^{20}$
$3A=3+3^2+3^3+3^4+....+3^{21}$
$\Rightarrow 3A-A=3^{21}-1$
$\Rightarrow A=\frac{3^{21}-1}{2}$
$B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{1}{2}$
232(2):
$A=1+4+4^2+4^3+....+4^{99}$
$4A=4+4^2+4^3+4^4+...+4^{100}$
$\Rightarrow 4A-A=(4+4^2+4^3+4^4+...+4^{100}) - (1+4+4^2+4^3+....+4^{99})$
$\Rightarrow 3A=4^{100}-1$
$\Rightarrow A=\frac{4^{100}-1}{3}=\frac{B-1}{3}=\frac{B}{3}-\frac{1}{3}< \frac{B}{3}$
Ta có đpcm.