Cho các số nguyên dương a,b,c,d thỏa mãn \(a< b\le c< d;ad=bc;\sqrt{d}-\sqrt{a}\le1\). Chứng minh rằng a là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
copy
a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)
\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)
=>đpcm
do a<b<c<d<m<n
=>a+b<c+d
a+b<m+n
=>a+b+a+b+a+b<a+b+c+d+m+n
=>a+b+a+b+a+b/a+b+c+d+m+n<a+b+c+d+m+n/a+b+c+d+m+n
<=>3(a+b)/a+b+c+m+d+n<1
=>a+b/a+b+c+d+m+b<1/3 (đpcm)
a<b<c<d<m<n thì:
a+b+c > 3a ; d+m+n > 3d => a+b+c+d+m+n > 3a + 3d
Do đó: \(\frac{a+d}{a+b+c+d+m+n}< \frac{a+d}{3a+3d}=\frac{1}{3}.\)đpcm
Cho 6 số nguyên dương thỏa mãn : a<b<c<d<m<n
Chứng minh rằng: \(\frac{a+d}{a+b+c+d+m+n}<\frac{1}{3}\)
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
a) ta có
\(a\left(a+d\right)-a\left(b+c\right)=a^2+ad-ab-ac=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)>0\)
do đó \(a\left(a+d\right)>a\left(b+c\right)\Leftrightarrow a+d>b+c\)
b) ta có
\(1\ge\left(\sqrt{d}-\sqrt{a}\right)^2=a+d-2\sqrt{ad}=>2\sqrt{ad}\ge a+d-1\)
mặt khác \(2\sqrt{ad}=2\sqrt{bc}\le b+c\)
suy ra \(b+c\ge a+d-1>b+c-1.DO\left(a+d-1\right)\)là số nguyên nên a+d-1=b+c
do đó
\(2\sqrt{ad}=a+d-1\Leftrightarrow\sqrt{d}-\sqrt{a}=1\Leftrightarrow\sqrt{d}=\sqrt{a}+1\)
bình phương 2 zế ta có
\(d=a+2\sqrt{a}+1\Leftrightarrow\sqrt{a}=\frac{d-a-1}{2}\)
do đó căn a là số hữu tỷ . MÀ a là số nguyên dương nên căn a là số nguyên . zì zậy a là số chính phương
Please help me!