(a2 +b2)(\(\frac{1}{a^2}+\frac{1}{b^2}\)) > 4 với (a,b khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài sai rồi
Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)
=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)
=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab
=(a2+ab+b2)(a-b+1)-24ab
mà a-b=7=>A=8a2+8ab+8b2-24ab
=8a2-16ab+8b2
=8(a-b)2=8 . 72=8 . 49=392
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!
\(\left(a^2+b^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)
\(\Leftrightarrow1+\frac{a^2}{b^2}+\frac{b^2}{a^2}+1-4\ge0\)
\(\Leftrightarrow\frac{a^4+b^4-2a^2b^2}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{\left(a^2-b^2\right)^2}{a^2b^2}\ge0\) (luôn đúng)
Vậy...