Cho A= 22017 Tìm HAI chữ số tân cùng của A
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DB
1
NT
0
PT
0
PV
3
13 tháng 1 2018
Ta có :
A = 410 . 523
A = 410 . 510 . 513
A = ( 4 . 5 )10 . 513
A = 2010 . 513
vì 2010 có tận cùng là 0 nên A có tận cùng là 0
13 tháng 1 2018
A=4^10.5^23
A=[4^2]^5.[...5]
A=...6....5=...0
Vậy A có tận cùng là 0
mình nghĩ là vậy
22 tháng 11 2016
1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)
Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25
Xét n có dạng 2k+1
\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)
Vì \(25^k\) có 2 chữ số tận cùng là 25
\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125
\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25
Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)
\(2^{2017}=2^{2016}\cdot2=\left(2^4\right)^{504}\cdot2=\left(\cdot\cdot\cdot6\right)^{504}\cdot2=\left(\cdot\cdot\cdot6\right)\cdot2=\left(\cdot\cdot\cdot12\right)\)
SR bạn nhé nhưng sai roi dù sao cũng cảm ơn vì đã trả lời