Tính giá trị của M
M=1+2+22+23+...+\(\dfrac{2^{2016}}{1-2^{2017}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 : Nếu bạn học casio thì dùng như sau: dùng xích ma nhập \(\left(-1\right)^{x+1}.x^2\) rồi cho x chạy từ 1 đến 2017
Cách 2:
\(M=1^2-2^2+3^2-4^2+.....-2016^2+2017^2\)
\(M=\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2017^2-2016^2\right)+1^2\)
\(M=\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2017-2016\right)\left(2017+2016\right)+1\)
\(M=1+5+9+...+4033=\left(\frac{4033+1}{2}\right).\left(\frac{4033-1}{4}+1\right)=2035153\)
Đặt \(2017=a\)
\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)
Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)
\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)
\(M=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)
\(=\left(2017^2-2016^2\right)+...+\left(3^2-2^2\right)+1^2\)
\(=\left(2017-2016\right)\left(2017+2016\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(=2017+2016+...+3+2+1\)
\(=\frac{2017\cdot\left(2017+1\right)}{2}=2035153\)
Đầu tiên viết M thành: M= 2017^2 - 2016^2 - ........-4^2 + 3^2 - 2^2 + 1^2
Sau đó bạn ghép cặp(lưu ý dấu - ngoài ngoặc thì trong ngoặc đổi dấu)
M=(2017^2 - 2016^2) -........--(4^2 - 3^2) - (2^2 - 1^2)
Tiếp đến AD hằng đẳng thức
Cuối cùng ta được: 4033 - 4029 - 4025 -.......- 3 (k/c là 4 đv)
AD cách tính tổng của dãy số cách đều để tính