K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

bài nào zậy bạn

8 tháng 8 2017

Câu 3 và caau4 bài giải phương trình nhé

8 tháng 11 2021

1) ĐKXĐ: \(x\ge-5\)

\(pt\Leftrightarrow x+5=9\Leftrightarrow x=9-5=4\left(tm\right)\)

2) ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\sqrt{x-3}=6\)

\(\Leftrightarrow2\sqrt{x-3}=6\Leftrightarrow\sqrt{x-3}=3\)

\(\Leftrightarrow x-3=9\Leftrightarrow x=12\left(tm\right)\)

3) ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)

\(\Leftrightarrow x+1-2\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

16 tháng 12 2021

tui uk.......u...a

18 tháng 11 2021

“Câu tục ngữ phản ánh mức độ khác nhau trong tình yêu thương vợ chồng. Người con gái luôn luôn thương yêu chồng bằng tình yêu đậm đà, mặn mà, đầy đặn khác nào “đương đông buổi chợ”. Còn tình cảm của người con trai chỉ đôi lúc nhưng mãnh liệt như cái “nắng quái chiều hôm” vậy.

18 tháng 11 2021

Tham Khảo

“Câu tục ngữ phản ánh mức độ khác nhau trong tình yêu thương vợ chồng. Người con gái luôn luôn thương yêu chồng bằng tình yêu đậm đà, mặn mà, đầy đặn khác nào “đương đông buổi chợ”. Còn tình cảm của người con trai chỉ đôi lúc nhưng mãnh liệt như cái “nắng quái chiều hôm” vậy. Nắng quái chiều hôm tuy ngắn ngủi nhưng sức nóng, sức cháy bỏng của ánh nắng xiên khoai này thật là ghê gớm”;

Em ơi đăng tách bài ra mỗi lượt đăng 1-2 bài thôi nha!

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)

c: \(12\cdot3^x+3\cdot15^x-5^{x+1}=20\)

=>\(12\cdot3^x+3\cdot3^x\cdot5^x-5^x\cdot5-20=0\)

=>\(3^x\cdot3\left(5^x+4\right)-5\left(5^x+4\right)=0\)

=>\(\left(3^{x+1}-5\right)\left(5^x+4\right)=0\)

=>\(3^{x+1}-5=0\)

=>\(3^{x+1}=5\)

=>\(x+1=log_35\)

=>\(x=log_35-1\)

f: \(25^x-2\left(3-x\right)\cdot5^x+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\cdot\left(2x-6\right)+2x-7=0\)

=>\(\left(5^x\right)^2+5^x\left(2x-7\right)+5^x+2x-7=0\)

=>\(5^x\left(5^x+2x-7\right)+\left(5^x+2x-7\right)=0\)

=>\(\left(5^x+1\right)\left(5^x+2x-7\right)=0\)

=>\(5^x+2x-7=0\)

Đặt \(A\left(x\right)=5^x+2x-7\)

=>\(A'\left(x\right)=5^x\cdot ln5+2>0\forall x\)

=>A(x) đồng biến trên R

=>A(x)=0 khi và chỉ khi x=1

i: \(9^x+2\left(x-2\right)\cdot3^x+2x-5=0\)

=>\(\left(3^x\right)^2+3^x\left(2x-5\right)+3^x+2x-5=0\)

=>\(\left(3^x+2x-5\right)\left(3^x+1\right)=0\)

=>\(3^x+2x-5=0\)

Đặt \(B\left(x\right)=3^x+2x-5\)

=>\(B'\left(x\right)=3^x\cdot ln3+2>0\)

=>B(x) luôn đồng biến trên R

=>B(x)=0 khi và chỉ khi x=1

8 tháng 8 2021

Bài 2 : (1) liên kết ; (2) electron ; (3) liên kết ; (4) : electron ; (5) sắp xếp electron

Bài 4 : 

$\dfrac{M_X}{4} = \dfrac{M_K}{3} \Rightarrow M_X = 52$

Vậy X là crom,KHHH : Cr

Bài 5 : 

$M_X = 3,5M_O = 3,5.16 = 56$ đvC

Tên : Sắt

KHHH : Fe

8 tháng 8 2021

Bài 9 : 

$M_Z = \dfrac{5,312.10^{-23}}{1,66.10^{-24}} = 32(đvC)$

Vậy Z là lưu huỳnh, KHHH : S

Bài 10  :

a) $PTK = 22M_{H_2} = 22.2 = 44(đvC)$

b) $M_{hợp\ chất} = X + 16.2 = 44 \Rightarrow X = 12$
Vậy X là cacbon, KHHH : C

Bài 11 : 

a) $PTK = 32.5 = 160(đvC)$

b) $M_{hợp\ chất} = 2A + 16.3 = 160 \Rightarrow A = 56$
Vậy A là sắt

c) $\%Fe = \dfrac{56.2}{160}.100\% = 70\%$

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

NV
21 tháng 3 2023

\(\Leftrightarrow2cos4x\left(cos2x-sin2x\right)=0\)

\(\Leftrightarrow cos4x=0\) (do \(cos4x=cos^22x-sin^22x\) đã bao hàm \(cos2x-sin2x\))

\(\Rightarrow4x=\dfrac{\pi}{2}+k\pi\)

\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)