\(CMR:\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
với x>0,y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)(1)
\(\Leftrightarrow\) \(\dfrac{bx^2+ay^2}{ab}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\) (a+b)(bx2+ay2) \(\geq\) ab(x+y)2
\(\Leftrightarrow\) abx2+a2y2+b2x2+aby2 \(\geq\) ab(x2+2xy+y2)
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 \(\geq\) abx2+2abxy+aby2
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 -abx2-2abxy-aby2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2abxy+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2(ay).(bx)+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay-bx)2 \(\geq\) 0(2)
Ta có BĐT(2) luôn đúng nên suy ra BĐT(1) luôn đúng.
Dấu = xảy ra khi và chỉ khi x=y=0.
Cho mình sửa dấu =
Dấu= xảy ra khi \(\begin{cases} x=y\\ a=b \end{cases}\)
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
Lời giải:
Đặt $\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p$ với $m,n,p>0$.
BĐT cần chứng minh tương đương với:
(m^2a+n^2b+p^2c)(a+b+c)\geq (am+bn+cp)^2$
$\Leftrightarrow m^2(ab+ac)+n^2(ba+bc)+p^2(ca+cb)\geq 2abmn+2amcp+2bncp$
$\Leftrightarrow ab(m^2-2mn+n^2)+bc(n^2-2np+p^2)+ca(m^2-2mp+p^2)\geq 0$
$\Leftrightarrow ab(m-n)^2+bc(n-p)^2+ca(m-p)^2\geq 0$
(luôn đúng với $a,b,c>0$)
Ta có đpcm.
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
a) Ta có : Vì \(x\ge0\)và \(y\ge0\)nên \(x+y\ge0\)\(\Leftrightarrow\left|x+y\right|=x+y\)
\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\frac{2}{x^2-y^2}\sqrt{\frac{3}{2}.\left(x+y\right)^2}\)
\(=\frac{2}{x^2-y^2}.\sqrt{\frac{3}{2}}.\left|x+y\right|\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}.\sqrt{\frac{3}{2}}.\left(x+y\right)\)
\(=\frac{2}{x-y}.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.2.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{\frac{2^2.3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{6}=\frac{\sqrt{6}}{x-y}\)
a, \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{x^2-y^2}\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{2\sqrt{3}\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\sqrt{2}}\)
do \(x\ge0;y\ge0\)
\(=\frac{2\sqrt{3}}{\sqrt{2}\left(x-y\right)}=\frac{2\sqrt{6}}{2\left(x-y\right)}=\frac{\sqrt{6}}{x-y}\)
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow a^2y.\left(x+y\right)+b^2x.\left(x+y\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2+a^2xy-a^2xy+b^2xy-b^2xy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
Dấu bằng xảy ra khi\(\dfrac{a}{x}=\dfrac{b}{y}\)
Xét hiệu:
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}-\dfrac{\left(a+b\right)^2}{x+y}\)
\(=\dfrac{a^2.y\left(x+y\right)}{xy\left(x+y\right)}+\dfrac{b^2x\left(x+y\right)}{xy\left(x+y\right)}-\dfrac{xy\left(a+b\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{a^2xy+a^2y^2+b^2x^2+b^2xy-a^2xy-2abxy-b^2xy}{xy\left(x+y\right)}\)
\(=\dfrac{a^2y^2-2abxy+b^2x^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(ay-bx\right)^2}{x^2y+xy^2}\ge0\)
=> BĐT luôn đúng